PART A
 DESIGN OF RCC STRUCTURES
 Chapter 1
 DESIGN OF COMBINED FOOTINGS

Combined footings are constructed for two or more columns when they are close to each other and their foundations overlap.

Combined footings are provided only when

1. When two columns are close together, causing overlap of adjacent isolated footings
2. Where soil bearing capacity is low causing overlap of adjacent isolated footings.
3. Proximity of building line or existing building or sewer, adjacent to building column.

- The main purpose of using combined footing is to distribute uniform pressure under the footing.
- To achieve this, the center of gravity of the footing area should coincide with the center of gravity of the two columns loads.

Following are the different types of combined footing

1. Slab type combined footing
2. Slab and Beam type combined footing
3. Strap type Combined footing.

Types of combined footing

2. Slab and beam type

3. Strap type

1. Design a combined footing for two RCC columns A and B separated by distance of $4 \mathrm{~m} \mathrm{c} / \mathrm{c}$, Column A is 500 x 500 and carries a load of 1250 KN and Column B is 600 x 600 and carries a load of 1600 KN . Take SBC of soil as 200 KN/m². Use M20 concrete and Fe415 Steel. Draw the rough sketches of the following
a. Sectional Elevation
b. Plan of bottom reinforcements
c. Plan of top reinforcements
d. Cross Section of two different places to show the maximum details of shear reinforcements.

Data Given :

Size of Column A $=500 \times 500 \mathrm{~mm}$
Load on Column A W ${ }_{1}=1250 \mathrm{KN}$
Size of Column $B=600 \times 600 \mathrm{~mm}$
Loan on Column B $W_{2}=1600 \mathrm{KN}$
SBC of Soil $=200 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{fck}=20 \mathrm{kN} / \mathrm{m}^{2}$
fy $=415 \mathrm{KN} / \mathrm{m}^{2}$

Soln:

1. Size of the Footing:

Total Column Load $=1250+1600 \quad=2850 \mathrm{KN}$
Self Wt. of Footing $=10 \%$ of Column Load $=285 \mathrm{KN}$ Total load
$=3135 \mathrm{KN}$

Area of footing $L X B=\frac{\text { Total Load }}{\text { SBC of Soil }}=\frac{3135}{200}$

$$
A_{f}=L \times B=15.675 \mathrm{~m}^{2}
$$

Assume the Width of the footing between 1.5 m to 2.5 m

$$
\begin{gathered}
\text { Take } B=2.5 \mathrm{~m} \\
\mathrm{~L} \times \mathrm{B}=15.675 \\
\mathrm{~L}=\frac{15.675}{2.5}=6.27 \mathrm{~m} \text { say } 6.5 \mathrm{~m} \\
\therefore \text { Provide } \mathrm{L} \times \mathrm{B}=6.5 \mathrm{~m} \times 2.5 \mathrm{~m}
\end{gathered}
$$

2. Projections $\mathrm{p}_{1} \& \mathrm{p}_{2}$:

Projections should be such that the center of gravity of column loads should coincide with the center of the footing.

\therefore CG of footing from the center of the Column A

$$
\begin{aligned}
\overline{\mathrm{x}} & =\frac{(W 1 * x 1)+(w 2 * x 2)}{(W 1+W 2)} \\
& =\frac{(1250 * 0)+(1600 * 4)}{(1250+1600)} \\
& \overline{\mathrm{x}}
\end{aligned}
$$

From the above diagram, we can write

$$
\begin{aligned}
& p_{1}+2.24=L / 2 \\
& p_{1}+2.4=6.5 / 2 \\
& p_{1}=1 m
\end{aligned}
$$

Also $p_{1}+4+p_{2}=L$

$$
1+4+p_{2}=6.5
$$

$$
\mathrm{p}_{2}=1.5 \mathrm{M}
$$

\therefore Projections $\mathrm{p}_{1}=1 \mathrm{~m}$ and $\mathrm{p}_{2}=1.5 \mathrm{~m}$

3. Shear force and Bending Moment Diagram: (SFD \& BMD):

Net Upward Pressure / $\mathrm{m}^{2} \quad \mathrm{q}=\frac{\text { Only Column load }}{\text { area of footing }}$

$$
\begin{aligned}
& =\frac{2850}{6.5 * 2.5} \\
q & =175.4 \mathrm{KN} / \mathrm{m}^{2}
\end{aligned}
$$

Net Upward Pressure/ m

$$
q_{0}=q \times B
$$

$$
\begin{aligned}
& =175.4 * 2.5 \\
& =438.5 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

Shear Force Calculation:

SF at A $\quad=0$
SF up to $B=+438.5^{*} 1=438.46 \mathrm{KN}$
SF at $B \quad=+438.5-1250=-811.54 \mathrm{KN}$
SF up to $C=-438.5 * 1.5=-657.7 \mathrm{KN}$
Sf at $C=-657.7+1600=+942.3 \mathrm{KN}$
SF at D $\quad=0$
Bending Moment Calculation:
BM at $\mathrm{A}=0$
BM at $\mathrm{B}=+438.46 * 1 * 1 / 2=+219.23 \mathrm{KN}-\mathrm{m}$
BM at $\mathrm{O}=+438.46 * 2.85 * 2.85 / 2-1250 * 1.85=-531.80 \mathrm{KN}-\mathrm{m}$
BM at $\mathrm{C}=+438.46 * 5 * 5 / 2-1250 * 4=+480.75 \mathrm{KN}-\mathrm{m}$
$B M$ at $D=0$

Location of Zero Shear Force:
The point where $\mathrm{SF}=0$, the BM is maximum
From Shear force diagram, from two similar triangles, we can write

$$
\begin{aligned}
& \frac{811.54}{x}=\frac{942.3}{(4-x)} \\
& \therefore x=1.85 \mathrm{~m}
\end{aligned}
$$

i.e Shear force is zero at a distance of 1.85 m from B.

Location of POC's:

1250 KN

POC is the point where BM changes its sign
Therefore equating BM at $\mathrm{x}-\mathrm{x}=0$
438.46 * $x * x / 2-800(x-1)=0$
$219.23 * x^{2}-1250 * x+1250=0$
Solving Quadratic equation,

$$
x_{1}=4.10 \mathrm{~m} \quad \& \quad x_{2}=1.5 \mathrm{~m}
$$

4. Design of Slab:

Provide width of Beam is equal to size of bigger column
\therefore Beam width $=600 \mathrm{~mm}$

Taking moment about Critical Section $\mathrm{x}-\mathrm{x}$

$$
\begin{aligned}
\therefore M=175.4 * 0.95 * \frac{0.95}{2}=79.15 \mathrm{KN}-\mathrm{m} \\
M u=1.5 * M=1.5 * 79.15=118.72 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

Thickness or Depth of Slab:
Equating M_{u} to $\mathrm{M}_{\mathrm{ulimit}}$
$\mathrm{M}_{\mathrm{u}}=0.36 \frac{x_{u, \max }}{d}\left[1-0.42 \frac{x_{u, \max }}{d}\right] f_{c k} b d^{2}$
$118.72 * 10^{6}=0.36 * 0.48[1-0.42 * 0.48] * 20 * 1000 * d^{2}$

$$
d=207.4 \mathrm{~mm}
$$

Using 60 mm effective cover
Overall depth $D=207.4+60=267 \mathrm{~mm}$ say 270 mm

But from shear consideration, double the above thickness

$\therefore \mathrm{D}=540 \mathrm{~mm}$ and $\mathrm{d}=480 \mathrm{~mm}$

Area of Steel:

$\mathrm{Mu}=0.87$ fy Ast $\mathrm{d}\left[1-\frac{\text { Ast fy }}{\text { fck bd }}\right]$
$118.72 \times 10^{6}=0.87 * 415 *$ Ast $* 480\left[1-\frac{\text { Ast } * 415}{20 * 1000 * 480}\right]$

$$
\text { Ast }=706.62 \mathrm{~mm}^{2}
$$

Providing 12 mm dia bars, Spacing is taken least of the following
i. Spacing $=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\frac{\pi * 12^{2}}{4}}{706.62} * 1000=160 \mathrm{~mm}$
ii. \quad Spacing $=3 \mathrm{~d}=3 * 480=1440 \mathrm{~mm}$
iii. Spacing $=300 \mathrm{~mm}$
\therefore Provide 12 mm dia bars @ $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Distribution Steel:

Ast $=0.12 \%$ of Gross Area $=\frac{0.12}{100} * 1000 * 540=648 \mathrm{~mm}^{2}$
Providing 10 mm dia bar, Spacing is taken as least of the following
i. Spacing $=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\frac{\pi * 10^{2}}{4}}{660} * 1000=121 \mathrm{~mm} \approx 120 \mathrm{~mm}$
ii. \quad Spacing $=5 \mathrm{~d}=5 * 480=2400 \mathrm{~mm}$
iii. \quad Spacing $=450 \mathrm{~mm}$

$$
\therefore \text { Provide } 10 \mathrm{~mm} \text { dia bars @ } 110 \mathrm{~mm} \text { c/c }
$$

5. Design of Beams:

Beam Width $\mathrm{b}=600 \mathrm{~mm}$

$A B$ and $C D$ portion are designed as Rectangular Beam and $B C$ portion is designed as T - Beam.

Concrete is very weak in tension, hence neglect the concrete portion in tension zone.
$\mathrm{M}_{\text {max }}=531.8 \mathrm{KN}-\mathrm{m}$ (From BM Diagram)
$\mathrm{Mu}=1.5$ * $531.8=797.7 \mathrm{KN}-\mathrm{m}$
Equating M_{u} to $\mathrm{M}_{\mathrm{ulimit}}$
$\mathrm{M}_{\mathrm{u}}=0.36 \frac{x_{u, \max }}{d}\left[1-0.42 \frac{x_{u, \max }}{d}\right] f_{c k} b d^{2}$
$797.7 * 10^{6}=0.36 * 0.48[1-0.42 * 0.48] * 20 * 600 * d^{2}$ $\mathrm{d}=694.14$ say 700 mm
\therefore Beam dimensions $\mathrm{b}=600 \mathrm{~mm}, \mathrm{~d}=700 \mathrm{~mm}$ and $\mathrm{D}=760 \mathrm{~mm}$

(i) Design of "AB" Portion:

$\mathrm{M}_{\mathrm{AB}}=219.23 \mathrm{KN}-\mathrm{m}$. (From BM diagaram)
$\mathrm{Mu}=1.5$ * $219.23=328.84 \mathrm{KN}-\mathrm{m}$
In $A B$ portion, tension is in the flange, hence neglecting tension zone, Take $b=600 \mathrm{~mm}$
Area of Steel:
$\mathrm{Mu}=0.87$ fy Ast $\mathrm{d}\left[1-\frac{\text { Ast fy }}{\mathrm{fck} \mathrm{bd}}\right]$
$328.8 \times 10^{6}=0.87 * 415 *$ Ast $* 700\left[1-\frac{\text { Ast } * 415}{20 * 600 * 700}\right]$

$$
\text { Ast }=1397.6 \mathrm{~mm}^{2}
$$

Providing 20 mm dia bars,

No. of bars $=\frac{\text { Ast }}{\text { ast }}=\frac{1397.6}{\frac{3.14 * 20^{2}}{4}}=5$ bars.
(ii) Design of "CD" Portion:
$\mathrm{M}_{\mathrm{CD}}=480.75 \mathrm{KN}-\mathrm{m}$. (From BM diagram)
$\mathrm{Mu}=1.5$ * $480.75=721.12 \mathrm{KN}-\mathrm{m}$
Even in CD portion, tension is in the flange, hence neglecting tension zone, Take $b=600 \mathrm{~mm}$
Area of Steel:
$\mathrm{Mu}=0.87 \mathrm{fy}$ Ast $\mathrm{d}\left[1-\frac{\text { Ast fy }}{\text { fck b d }}\right]$
$721.12 \times 10^{6}=0.87 * 415 *$ Ast $* 700\left[1-\frac{\text { Ast } * 415}{20 * 600 * 700}\right]$

$$
\text { Ast }=3437 \mathrm{~mm}^{2}
$$

Providing 25 mm dia bars,
No. of bars $=\frac{A s t}{\text { ast }}=\frac{1397.6}{\frac{3.14 * 25^{2}}{4}}=7$ bars.

(iii) Design of "BC" Portion:

$\mathrm{M}_{\mathrm{BC}}=531.8 \mathrm{KN}-\mathrm{m}$. (from BM diagram)
$\mathrm{Mu}=1.5 * 531.8=797.7 \mathrm{KN}-\mathrm{m}$
In this portion, tension is in WEB, hence neglecting, web portion and considering flange
$\therefore \mathrm{b}=\mathrm{b}_{\mathrm{f}}=$ effective flange width
Hence beam is designed like a T- Beam

For Isolated T-Beam

Effective flange width $\quad \mathrm{b}_{\mathrm{f}}=\frac{l_{o}}{\left(\frac{l_{o}}{b}\right)+4}+b_{w} \quad---$-Page 37, IS 456

$$
\begin{aligned}
& \mathrm{b}=\text { Actual flange Width }=2500 \\
& l_{o}=\text { Distance between points of zero moments }
\end{aligned}
$$

From BMD $\quad l_{o}=$ Distance between POC

$$
=\left(x_{1}-x_{2}\right)=4.4-1.29=3.11 \mathrm{~m}=3110 \mathrm{~mm}
$$

Therefore,

$$
b_{f}=\frac{3110}{\left(\frac{3110}{2500}\right)+4}+600=1193 \mathrm{~mm}
$$

Area of Steel:
$\mathrm{Mu}=0.87$ fy Ast $\mathrm{d}\left[1-\frac{\text { Ast fy }}{\text { fck } b_{f} \mathrm{~d}}\right]$
$797.7 \times 10^{6}=0.87 * 415 *$ Ast $* 700\left[1-\frac{\text { Ast } * 415}{20 * 1193 * 700}\right]$

$$
\text { Ast }=3453.5 \mathrm{~mm}^{2}
$$

Providing 25 mm dia bars,
No. of bars $=\frac{\text { Ast }}{\text { ast }}=\frac{3453.5}{\frac{3.14 * 25^{2}}{4}}=7$ bars.

Design of Beam for Shear:

Maximum shear force $V_{\max }=942.3 \mathrm{KN}$ (From SFD)
Ultimate shear force $=1.5$ * $942.3=1413.4 \mathrm{KN}$
$\mathrm{b}=600 \mathrm{~mm}, \mathrm{~d}=700 \mathrm{~mm}$, Ast $=3453.5 \mathrm{~mm}^{2}$
Nominal Shear force $\tau_{v}=\frac{V u}{B d}=\frac{1413.4 * 10^{3}}{600 * 700}=3.36 \mathrm{~N} / \mathrm{mm}^{2}$

Shear Stress in Concrete: $\left(\tau_{\underline{c}}\right)$

$$
\mathrm{P}_{\mathrm{t}}=\frac{100 \text { Ast }}{b d}=\frac{100 * 3453.5}{600 * 700}=0.82
$$

Referring to IS 456, Pg 73 , for $\mathrm{Pt}=0.82$ and M_{20} Concrete

$$
\therefore \tau_{c}=0.58 \mathrm{~N} / \mathrm{mm}^{2}
$$

Comparing $\tau_{v a n d} \tau_{c}$,

$$
\tau_{v}>\tau_{c}, \therefore \text { Provide Shear Reinforcement }
$$

Vertical Stirrups:

Using 4L - \#10 mm Vertical stirrups

$$
\mathrm{A}_{\mathrm{sv}}=4 * \frac{\pi * 10^{2}}{4}=314.16 \mathrm{~mm}^{2}
$$

Shear force to be carried by vertical stirrups

$$
\begin{aligned}
V_{\mathrm{us}} & =\left(\mathrm{Vu}-\tau_{\mathrm{c}} * \mathrm{~b}^{*} \mathrm{D}\right)=\left(1413.4 * 10^{3}-0.58 * 600 * 700\right) \\
& =1169.83 \mathrm{kN}
\end{aligned}
$$

From IS 456, Page 73

$$
\mathrm{V}_{\mathrm{us}}=\frac{0.87 f y \text { Asv d }}{S v}
$$

\therefore Spacing of Vertical Stirrups from above equation
$\mathrm{S}_{\mathrm{v}}=\frac{0.87 \text { fy Asvd }}{\text { Vus }}$
Sv $=\frac{0.87 * 415 * 314.15 * 700}{1169.83 * 10^{3}}=67.87 \mathrm{~mm}$ say 65 mm

Provide 4L - \#10 mm Vertical Stirrups @ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ below the Column and @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in other places

Shear strength of Concrete at distance x from apex (from o) of above triangle

$$
\begin{aligned}
V_{c}=\tau_{c} * b * d & =0.58 * 600 * 700 \\
& =243.6 \mathrm{KN}
\end{aligned}
$$

Distance x from above similar triangles

$$
\begin{aligned}
& \therefore \quad \frac{1413.4}{2.15}=\frac{243.6}{x} \\
& \therefore \quad x=0.37 \mathrm{~m} .
\end{aligned}
$$

Spacing of Stirrups:

Vertical Stirrups @ 65 mm c/c below the Column and @ 300 $\mathrm{mm} \mathrm{c} / \mathrm{c}$ in other places (0.37 m from apex of the triangles)

Plan showing Slab, Beam and Column

Plan showing reinforcement in slab

\#12@160\%

Cross Section at Mid span (X2 - X2)

Cross Section through the Column (X3 - X3)

Longitudinal Section showing reinforcement in beam

DESIGN OF WATER TANKS

(Working stress method using IS 3370 - Code of Practice for Concrete structure for the storage of liquids)

Following are the different types of water tanks to be designed
A. Design of circular water tank with rigid base.
B. Design of circular water tank with flexible base.
C. Design of rectangular water tank.

Working Stress Method:

a. Permissible Stresses in Concrete:
$\sigma_{c b c}=$ Permissible Bending Compressive Stress in concrete.
$\sigma_{\mathrm{ct}}=$ Permissible Tensile Stress in Concrete.

Grade of Concrete	$\sigma_{c b c}$	$\sigma_{c t}$
M_{15}	$5 \mathrm{~N} / \mathrm{mm}^{2}$	$1.10 \quad \mathrm{~N} / \mathrm{mm}^{2}$
M_{20}	$7 \mathrm{~N} / \mathrm{mm}^{2}$	$1.20 \mathrm{~N} / \mathrm{mm}^{2}$
M_{25}	$8.5 \mathrm{~N} / \mathrm{mm}^{2}$	$1.30 \mathrm{~N} / \mathrm{mm}^{2}$

b. Permissible Tensile Stresses in Steel:
$\sigma_{s t}=$ Permissible Tensile stress in Steel.

Grade of Steel	Near Water face	Away from Water face
Mild steel or Fe 250	$115 \mathrm{~N} / \mathrm{mm}^{2}$	$125 \mathrm{~N} / \mathrm{mm}^{2}$
HYSD or Fe 415 or Fe 500	$150 \mathrm{~N} / \mathrm{mm}^{2}$	$190 \mathrm{~N} / \mathrm{mm}^{2}$

c. Working Stress Constants:
i. Modular ratio $\quad \mathrm{m}=\frac{280}{3 \sigma_{c b c}}$
ii. Neutral axis cOefficient $\mathrm{k}=\frac{m \sigma_{c b c}}{m \sigma_{c b c}+\sigma_{s t}}$
iii. Lever arm constant $\mathrm{j}=1-\frac{k}{3}$
iv. Moment of Resistance coefficient $\mathrm{Q}=\frac{\sigma_{c b c} k j}{2}$
vi. Effective depth $\mathrm{d}=\sqrt{\frac{M}{Q \times b}}$
vii. Area of Steel

If the moment is known $\mathrm{A}_{\mathrm{st}}=\frac{M}{\sigma_{c b c} j d}$
If force is known

$$
\mathrm{A}_{\mathrm{st}}=\frac{\text { Force }}{\sigma_{s t}}
$$

d. Specifications for the design of Water Tank:

i. Adopt clear cover $=30 \mathrm{~mm}$
ii. Minimum reinforcement

Up to 100 mm thick wall $=0.3 \%$ of Gross Area
Between 100 \& 450 mm thick wall $=0.2 \%$ of Gross Area
iii. Thickness of wall (T)

1. $\mathrm{T}=30 \mathrm{H}+50 \mathrm{~mm}, \quad$ Where $\mathrm{H}=$ Depth of water in m
2. $\sigma_{\mathrm{cbc}}=\frac{\text { Maximum Hoop Tension }}{1000 T+(m-1) \text { Ast. }}$
iv. $w=$ Unit weight of water $=1000 \mathrm{~N} / \mathrm{m}^{3}$

$$
=1 \mathrm{KN} / \mathrm{m}^{3}
$$

Also 1000 lts $=1 \mathrm{~m}^{3}$

$$
\therefore 1 \mathrm{lt}=1 * 10^{-3} \mathrm{~m}^{3}
$$

Design of circular water tank with flexible Base.

1. Design a circular water tank with flexible base for a capacity of $4 \times 10^{5} \mathrm{Its}$. The depth of water tank is to be 4 m with a free board of 200 mm . Use M25 and Fe 415 steel.

Draw the following sketches
a. Cross section of the tank
b. Half plan through the wall
c. Half plan through the base slab.

Data given:

Capacity $=4 \times 10^{5}$ Its.
Depth H $=4 \mathrm{~m}$
Free board $=0.2 \mathrm{~m}$
Take Unit weight of water $=9.81 \mathrm{KN} / \mathrm{m}^{3}$

$$
=981 \mathrm{~N} / \mathrm{m}^{3}
$$

1. Design Constants

For $\mathrm{M} 25, \quad \sigma_{\mathrm{cbc}}=8.5 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{\mathrm{ct}}=1.31 \mathrm{~N} / \mathrm{mm}^{2}$
For Fe 415, $\quad \sigma_{s t}=150 \mathrm{~N} / \mathrm{mm}^{2}$
Modular ratio $\mathrm{m}=\frac{280}{3 \sigma_{c b c}}=\frac{280}{3 * 8.5}=10.98$
2. Dimensions of the Water Tank:

Equating capacity to volume
i.e. capacity = Volume
4×10^{5} Its. $=$ Area $*$ Height

$$
\begin{aligned}
& \frac{4 \times 105}{1000} \mathrm{~m}^{3}=\frac{\pi D^{2}}{4} * 4 \mathrm{~m} \\
& \mathrm{D}=11.28 \mathrm{~m} \text { say } \mathrm{D}=11.3 \mathrm{~m} .
\end{aligned}
$$

3. Hoop Tension (in the bottom 1m height)

Here $H=4 \mathrm{~m}$ from top
Maximum Hoop tension $=W * H^{*} \frac{D}{2}$

$$
\begin{aligned}
& =9.81 * 4 * \frac{11.3}{2} \\
& =221.70 \mathrm{KN}
\end{aligned}
$$

\therefore Area of hoop tension steel, $\mathrm{A}_{\mathrm{st}}=\frac{\text { Force }}{\sigma \mathrm{st}}=\frac{\text { max.Hoop tension }}{\sigma \mathrm{st}}$

$$
\text { Ast }=\frac{221.70 * 10^{3}}{150}=1478 \mathrm{~mm}^{2}
$$

Providing 16 mm dia bars
Spacing $=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\frac{\pi * 16^{2}}{4}}{1478} * 1000=136.03=130 \mathrm{~mm}$
\therefore Provide \#16mm hoop tension steel @ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in the bottom 1 m height

4. Hoop Tension in 1 m to 2 m from bottom:

Here $H=3 \mathrm{~m}$ from top
Hoop tension $=W * \mathrm{H}_{1} * \frac{D}{2}$

$$
\begin{aligned}
& =9.81 * 3 * \frac{11.3}{2} \\
& =166.27 \mathrm{KN}
\end{aligned}
$$

\therefore Area of hoop tension steel, $\mathrm{A}_{\mathrm{st}}=\frac{\text { Force }}{\sigma \mathrm{st}}=\frac{\text { Hoop tension }}{\sigma \mathrm{st}}$

$$
\text { Ast }=\frac{166.27 * 10^{3}}{150}=1108.46 \mathrm{~mm}^{2}
$$

Providing 16 mm dia bars
Spacing $=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\frac{\pi * 16^{2}}{4}}{1108.46} * 1000=181.3=180 \mathrm{~mm}$
\therefore Provide \#16mm hoop tension steel @ $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ between 1 m to 2 m from bottom
5. Hoop Tension between $2 m-3 m$ from bottom:

Here $H=2 \mathrm{~m}$ from top
Hoop tension $=W * \mathrm{H}_{2} * \frac{D}{2}$

$$
\begin{aligned}
& =9.81 * 2 * \frac{11.3}{2} \\
& =110.85 \mathrm{KN}
\end{aligned}
$$

\therefore Area of hoop tension steel, $\mathrm{A}_{\mathrm{st}}=\frac{\text { Force }}{\sigma \mathrm{st}}=\frac{\text { Hoop tension }}{\sigma \mathrm{st}}$

$$
\text { Ast }=\frac{110.85 * 10^{3}}{150}=739 \mathrm{~mm}^{2}
$$

Providing 16 mm dia bars

$$
\text { Spacing }=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\frac{\pi * 16^{2}}{4}}{739} * 1000=270 \mathrm{~mm}
$$

\therefore Provide \#16mm hoop tension steel @ 270 mm c/c between 2 m to 3 m from bottom
6. Wall Thickness: (T)

1. $\mathrm{T}=30 \mathrm{H}+50 \mathrm{~mm}, \quad$ Where $\mathrm{H}=$ Depth of water in m

$$
=30 * 4+50 \mathrm{~mm}=170 \mathrm{~mm}
$$

2. $\sigma_{\mathrm{cbc}}=\frac{\text { Maximum Hoop Tension }}{1000 T+(m-1) \text { Ast. }}$

$$
1.30=\frac{221.70 * 10^{3}}{1000 T+(10.98-1) * 1478}
$$

$$
\mathrm{T}=155.78 \mathrm{~mm}
$$

$$
\therefore \text { Take } \mathrm{T}=170 \mathrm{~mm}
$$

7. Steel for remaining top 1 m height: (between 3 to 4 m)

For top 1m, provide minimum steel,
For 100 thick wall, Minimum steel $\quad=0.3 \%$ of gross area
For 450 thick wall, Minimum steel $=0.2 \%$ of gross area

\therefore For 170 thick wall, Minimum steel $=0.28 \%$ of gross area

$$
\begin{aligned}
& =0.28 / 100 *(1000 * 170) \\
& =476 \mathrm{~mm}^{2}
\end{aligned}
$$

Using 12 mm dia bars

$$
\text { Spacing }=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\frac{\pi * 12^{2}}{4}}{476} * 1000=237 \text { say } 230 \mathrm{~mm}
$$

\therefore Provide \#12 mm hoop tension steel @ $230 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ from top 1 m

7. Vertical Distribution Steel:

Area of steel $=0.28 \%$ of gross area

$$
\begin{aligned}
& =0.28 / 100 *(1000 * 170) \\
& =476 \mathrm{~mm}^{2}
\end{aligned}
$$

Using 10 mm dia bars

$$
\text { Spacing }=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\frac{\pi * 10^{2}}{4}}{476} * 1000=164 \text { say } 160 \mathrm{~mm}
$$

$$
\therefore \text { Provide \#10 mm @ } 160 \mathrm{~mm} \mathrm{c} / \mathrm{c} \text { as Vertical Steel. }
$$

8. Base slab Design (Floor slab):

Base slab is continuously supported on ground, therefore provide a minimum thickness of 150 mm and reinforcement of 0.3% of steel in the form of mesh @ top and bottom

$$
\begin{aligned}
\therefore \text { Area of steel } & =0.3 \% \text { of Area } \\
& =0.3 / 100 *(1000 * 150) \\
& =450 \mathrm{~mm}^{2}
\end{aligned}
$$

Using 10 mm dia bars

Spacing $=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\frac{\pi * 10^{2}}{4}}{450} * 1000=174.53$ say 170 mm
\therefore Provide \#10 mm @ $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

CROSS SECTION OF THE TANK

Design of Circular Water Tank with RIGID BASE

(Fixed or rigid base or restrained at the base)

1. Design a circular water tank of an internal dia 10 m and height 4 m , the walls are restrained at the base. Use IS code method. Design the tank for M25 and Fe415. Draw sketches showing reinforcements
a. Cross section of water tank.
b. Draw half plan through wall.
c. Draw half plan through base slab.

Given Data:

Diameter $=10 \mathrm{~m}$, height $=4 \mathrm{~m}$, Assume free board $=0.2 \mathrm{~m}$

1. Design Constants:

For M25, $\quad \sigma_{c b c}=8.5 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{\mathrm{ct}}=1.31 \mathrm{~N} / \mathrm{mm}^{2}$
For Fe 415, $\sigma_{\text {st }}=150 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
& \mathrm{m}=\frac{280}{3 \sigma_{c b c}}=\frac{280}{3 * 8.5}=10.9 \\
& \mathrm{k}=\frac{m \sigma_{c b c}}{m \sigma_{c b c}+\sigma_{s t}}=\frac{10.98 * 8.5}{10.98 * 8.5+150}=0.383 \\
& \mathrm{j}=1-\frac{0.383}{3}=0.872
\end{aligned}
$$

$$
\mathrm{Q}=\frac{8.5 * 0.383 * 0.872}{2}=1.42
$$

2. Thickness of Wall:

$$
\mathrm{T}=30 \mathrm{H}+50 \mathrm{~mm}=30 * 4+50=170 \mathrm{~mm}
$$

$$
\text { Using } 50 \mathrm{~mm} \text { Effective Cover, } \mathrm{d}=170-50=120 \mathrm{~mm}
$$

3. Hoop Tension and Bending Moment (Ring Tension):

Hoop Tension:

From IS 3370 (Part IV) , Table-9, Page 35

$$
\text { Hoop Tension }=\text { Coefficient }{ }^{*} \mathrm{H}^{*} \mathrm{D} / 2 * \mathrm{~W}(\mathrm{Kg} / \mathrm{m})
$$

$$
\text { Ratio }=\frac{H^{2}}{D T}=\frac{4^{2}}{10 * 170}=9.41
$$

Search for the maximum values, it coincides at 0.6 H

$$
\text { For } 8-0.578
$$

$$
10-0.602
$$

By interpolating for $9.41-0.598 \approx 0.6$

$$
\therefore \text { Hoop Tension }=0.6{ }^{*} 4^{*} 10 / 2^{*} 9.81=117.72 \mathrm{KN}
$$

Bending Moment:
From IS 3370, Table 10, page 36

$$
\begin{aligned}
& \text { Moment }=\text { Coefficient }{ }^{*} \mathrm{~W}^{*} \mathrm{H}^{3} \\
& \text { Ratio }=\frac{H^{2}}{D T}=\frac{4^{2}}{10 * 170}=9.41
\end{aligned}
$$

Search for the maximum values, it coincides at 1.0 H

$$
\begin{array}{r}
\text { For } 8-0.0146 \\
10-0.0122
\end{array}
$$

By interpolating for $9.41-0.0129$

$$
\begin{aligned}
\therefore \text { Moment } & =\text { Coefficient } * \mathrm{~W}^{*} \mathrm{H}^{3}=0.0129 * 9.81 * 4^{3} \\
& =8.10 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

4. Area of Steel:

a. Hoop Steel for Hoop Tension:

$$
\text { Ast }=\frac{\text { Hoop Tension }}{\sigma s t}=\frac{118 * 10^{3}}{150}=786.67 \mathrm{~mm}^{2}
$$

Providing 12 mm dia bars,

$$
\text { Spacing }=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\pi * 12^{2} / 4}{786.67} * 1000=140 \mathrm{~mm}
$$

\therefore Provide 12 mm dia bars @ $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ up to a depth $=0.6 \mathrm{H}=$ 2.4 m from bottom and $280 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ for the remaining depth
b. Bending Moment or Cantilever Steel:

$$
\text { Ast }=\frac{M}{\sigma s t * j * d}=\frac{8.10 * 10^{6}}{150 * 0.872 * 135}=459 \mathrm{~mm}^{2}
$$

$\mathrm{T}=170 \mathrm{~mm}$, Using 10 mm bar and 30 mm clear cover
$\mathrm{d}=170-30-10 / 2=135 \mathrm{~mm}$
Check for minimum Steel
Min Steel $=0.3 \%$ of Gross area, for $T=100 \mathrm{~mm}$

$$
=0.2 \% \text { of Gross area, for } T=450 \mathrm{~mm}
$$

For $\mathrm{T}=170 \mathrm{~mm}$ Min Steel $=0.28 \%$ of Gross area

$$
\therefore \text { Ast }=0.28 / 100 * 1000^{*} 170=476 \mathrm{~mm}^{2}
$$

Providing 10 mm dia bars,

$$
\text { Spacing }=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\pi * 10^{2} / 4}{476} * 1000=160 \mathrm{~mm}
$$

\therefore Provide 10mm dia bars @ 160 mm as Cantilever steel up to a height of $0.4^{*} \mathrm{H}=1.6 \mathrm{~m}($ or $4-2.4=1.6 \mathrm{~m})$ from bottom

c. Vertical Distribution Steel:

Area of steel $=0.28 \%$ of Gross Area

$$
\therefore \text { Ast }=0.28 / 100 * 1000 * 170=476 \mathrm{~mm}^{2}
$$

Providing 8 mm dia bars,
Spacing $=\frac{\text { ast }}{\text { Ast }} \quad * 1000=\frac{\pi * 8^{2} / 4}{476} * 1000=100 \mathrm{~mm}$

$$
\therefore \text { Provide } 8 \mathrm{~mm} \text { dia bars @ } 100 \text { mm }
$$

5. Base Slab Design:

Provide 150 mm thick slab with 0.3% of Gross area of steel in the form of mesh @ top and bottom.

Area of steel $=0.3 \%$ of Gross Area

$$
\therefore \text { Ast }=0.23 / 100 * 1000 * 150=450 \mathrm{~mm}^{2}
$$

Providing 10 mm dia bars,

$$
\text { Spacing }=\frac{\text { ast }}{\text { Ast }} \quad * 1000=\frac{\pi * 8^{2} / 4}{476} * 1000=170 \mathrm{~mm}
$$

\therefore Provide 10 mm dia bars @ $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in the form of mesh

> Also provide haunch $150 \mathrm{~mm} \times 150 \mathrm{~mm}$ with 8 mm dia bars @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Cross Section of Water Tank (fixed)

Half plan through wall \& Half plan through base slab
2. Design a circular water tank 12 m dia, 4 m height, the tank rests on ground, the wall is fixed on a base slab. Use M20 concrete and Fe 415 steel. Adopt working stress method and design as per 3370. Also draw the following sketch a. Section through the tank.
b. Base slab reinforcement at top and bottom.

Design of Rectangular Water Tank (By using IS 3370 -Part(4)

1. A rectangular water tank with an open top is required to store 80,000 lts of water. The inside dimension of the tank may be taken as $6 \times 4 \mathrm{~m}$. Design the side wall of the tank using M20

Concrete and Fe415 steel. Use IS method. Also draw
a. Sectional plan of the tank
b. Longitudinal section of the tank
c. Cross Section of the tank.

Given Data:
Capacity $=80,000$ lts
Inside dimension $\mathrm{L}=6 \mathrm{~m}, \mathrm{~B}=4 \mathrm{~m}$

1. Design Constants:

For M20 $\quad \sigma_{c b c}=7 \mathrm{~N} / \mathrm{mm}^{2} \quad \sigma_{c t}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$
For Fe415 $\sigma_{s t}=150 \mathrm{~N} / \mathrm{mm}^{2}$
i. Modular ratio $\quad \mathrm{m}=\frac{280}{3 \sigma_{c b c}}=\frac{280}{3 * 7}=13.33$
ii. Neutral axis coefficient $\mathrm{k}=\frac{m \sigma_{c b c}}{m \sigma_{c b c}+\sigma_{s t}}=\frac{13.33 * 7}{(13.33 * 7+150}=0.383$
iii. Lever arm constant

$$
\mathrm{j}=1-\frac{0.383}{3}=0.8723
$$

iv. Moment of Resistance coefficient

$$
Q=\frac{7 * 0.38 * 0.87}{2}=1.16
$$

Equating Capacity to volume

$$
\begin{aligned}
& \text { i.e. Capacity }=\text { Volume } \\
& 80, o 00 \text { lts }=\text { Area }{ }^{*} \text { Height } \\
& 80 \mathrm{~m}^{3}=\mathrm{L} * \mathrm{~B} * \mathrm{H} \\
& 80=6 * 4^{*} \mathrm{H} \\
& \mathrm{H}=3.33 \mathrm{~m}
\end{aligned}
$$

Providing 0.17 m as free board, $\mathrm{H}=3.33+0.17=3.5 \mathrm{~m}$

2. Moment Calculation:

i. Moment Calculation for long wall:

As per IS 3370, table 3,
Horizontal moment $=\mathrm{M}_{\mathrm{y}} \mathrm{W} \mathrm{a}^{3}$
Vertical moment $=\mathrm{M}_{\mathrm{x}} \mathrm{W} \mathrm{a}^{3}$

$$
\mathrm{a}=\text { height of the wall }=3.5 \mathrm{~m}
$$

$$
\mathrm{b}=\text { Width of wall } \quad=6 \mathrm{~m}
$$

\therefore Ratio $=\mathrm{b} / \mathrm{a}=6 / 3.5=1.71$

	Mx	My	
For 1.75	0.074	0.052	Select the Max
For 1.71	?	?	Coefficients
For 1.5	0.060	0.044	

\therefore By interpolating for $1.71 \mathrm{Mx}=0.0719 \& \mathrm{My}=0.051$
\therefore Horizontal moment $=0.051^{*} 10 * 3.5^{3}=21.86 \mathrm{KN}-\mathrm{m}$
\therefore Vertical moment $\quad=0.071^{*} 10^{*} 3.5^{3}=30.87 \mathrm{KN}-\mathrm{m}$
ii) Moment calculation for short Wall:

$$
\mathrm{a}=\text { height }=3.5 \mathrm{~m}, \mathrm{~b}=4 \mathrm{~m}
$$

Ratio b/a $=4 / 3.5=1.14$
Mx My

For $1.25 \ldots \ldots \ldots . . .$.	0.047	0.037		
For 1.14	$?$	$?$		
For $1.0 \ldots \ldots \ldots .$.	0.035	0.029	$\quad \xrightarrow{\text { Select the Max }}$	coefficients
:---				

\therefore By interpolating for $1.14, \mathrm{Mx}=0.042 \& \mathrm{My}=0.033$
\therefore Horizontal moment $=0.033^{*} 10 * 3.5^{3}=14.14 \mathrm{KN}-\mathrm{m}$
\therefore Vertical moment $\quad=0.042^{*} 10 * 3.5^{3}=18 \mathrm{KN}-\mathrm{m}$
iii) Moment for long wall Corner:

$$
\mathrm{a}=\text { height }=3.5 \mathrm{~m}, \mathrm{~b}=6 \mathrm{~m}
$$

Ratio $=b / a=6 / 3.5=1.71$
Also $\mathrm{y}=\mathrm{b} / 2$
From IS 3370, table 3,

$$
\mathrm{Mx} \quad \mathrm{My}
$$

For 1.75
0.01
For 1.71
For 1.5
0.009
$\left.\begin{array}{c}0.052 \\ ? \\ 0.044\end{array}\right] \begin{gathered}\text { Select the Max } \\ \text { coefficients }\end{gathered}$
\therefore By interpolating for $1.71, \mathrm{Mx}=0.009 \& \mathrm{My}=0.050$
Neglect Mx value since coefficient is very small
Horizontal moment $=\mathrm{My} \mathrm{w} \mathrm{a}^{3}=0.050^{*} 10^{*} 3.5^{3}=21.437 \mathrm{KN}-\mathrm{m}$
3. Tank wall thickness:

Maximum Bending moment $=30.87 \mathrm{KN}-\mathrm{m}$
\therefore Effective depth $\mathrm{d}=\sqrt{\frac{m}{Q * b}}=\sqrt{\frac{30.87 * 10^{6}}{1.16 * 1000}}=163.12 \mathrm{~mm}$
Providing 50mm effective cover $\mathrm{D}=63.13+50=213.13 \approx 220 \mathrm{~mm}$

$$
\therefore \text { Provide D }=220 \mathrm{~mm} \& \mathrm{~d}=170 \mathrm{~mm}
$$

4. Pull in each Wall:

Pull in long wall $=\frac{w H B}{2}=\frac{10 * 3.5 * 4}{2}=70 \mathrm{KN}$
Pull in short wall $=\frac{w H L}{2}=\frac{10 * 3.5 * 6}{2}=105 \mathrm{KN}$
5. Design of long wall:

i. Hoop steel or Horizontal Steel:

$$
\mathrm{Ast}=\frac{M-T \cdot x}{\sigma s t \cdot j \cdot d}+\frac{T}{\sigma s t}
$$

where $\mathrm{M}=$ Horizonal Moment $=21.86 \mathrm{KN}-\mathrm{m}, \mathrm{T}=70 \mathrm{KN}$

$$
\text { Ast }=\frac{21.86 * 10^{9}\left(70 * 10^{3}\right)}{150 * 0.87 * 170}+\frac{70 * 10^{3}}{150}=1263 \mathrm{~mm}^{2}
$$

Providing 16 mm dia bars,

$$
\text { Spacing }=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\pi * 16^{2} / 4}{1263} * 1000=160 \mathrm{~mm}
$$

$$
\therefore \text { Provide } 16 \mathrm{~mm} \text { dia bars @ } 160 \mathrm{~mm} \mathrm{c} / \mathrm{c}
$$

ii. Vertical Steel

$$
\mathrm{Ast}=\frac{M}{\sigma s t . j . d}
$$

$$
\text { Ast }=\frac{30.87 * 10^{9}}{150 * 0.87 * 170}=1392 \mathrm{~mm}^{2}
$$

Providing 12 mm dia bars,
Spacing $=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\pi * 12^{2} / 4}{1392} * 1000=81.24 \mathrm{~mm}$ say 80 mm
\therefore Provide 12 mm dia bars @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
6. Design of Short Wall:
i. Hoop steel or Horizontal Steel:

$$
\mathrm{Ast}=\frac{M-T \cdot x}{\sigma s t \cdot j \cdot d}+\frac{T}{\sigma s t}
$$

where $\mathrm{M}=$ Horizonal Moment $=14.14 \mathrm{KN}-\mathrm{m}, \mathrm{T}=105 \mathrm{KN}$

$$
\text { Ast }=\frac{14.14 * 10^{6}\left(105 * 10^{3}\right)}{150 * 0.87 * 170}+\frac{105 * 10^{3}}{150}=1054 \mathrm{~mm}^{2}
$$

Providing 16 mm dia bars,

$$
\text { Spacing }=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\pi * 16^{2} / 4}{1054} * 1000=190 \mathrm{~mm}
$$

\therefore Provide 16 mm dia bars @ 190 mm c/c

ii. Vertical Steel:

$$
\mathrm{Ast}=\frac{M}{\sigma s t . j . d}
$$

$$
\text { Ast }=\frac{18 * 10^{6}}{150 * 0.87 * 170}=811.35 \mathrm{~mm}^{2}
$$

Providing 12 mm dia bars,
Spacing $=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\pi * 12^{2} / 4}{811.35} * 1000=139.2 \mathrm{~mm}$ say 140 mm
\therefore Provide 12 mm dia bars @ 140 mm c/c
7. Design of Corner Wall :

$$
\mathrm{Ast}=\frac{M}{\sigma s t . j . d}
$$

$$
\text { Ast }=\frac{21.43 * 10^{6}}{150 * 0.87 * 170}=966 \mathrm{~mm}^{2}
$$

Providing 16 mm dia bars,
Spacing $=\frac{\text { ast }}{\text { Ast }} * 1000=\frac{\pi * 16^{2} / 4}{966} * 1000=200 \mathrm{~mm}$

8. Design of Base Slab:

Provide minimum thickness $=150 \mathrm{~mm}$
Also provide minimum steel in the form of mesh at the top and bottom = \#10 @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

Sectional Plan of the tank

CROSS SECTION ALONG SHORT WALL

CROSS SECTION ALONG LONGER WALL
2. A rectangular water tank with an open top is required to store 1,00,000 lts of water. The inside dimension of the water tank may be taken as 8 mx 4 m . The tank rests on ground. Design the side walls of the tank using the following

Permissible Compressive stress in concrete $=7 \mathrm{~N} / \mathrm{mm}^{2}$
Permissible Tensile stress in steel $=150 \mathrm{~N} / \mathrm{mm}^{2}$
Modular ratio $=13.33$
Draw the following sketches.
a. Sectional elevation through short wall.
b. Sectional elevation through long wall.
c. Sectional plan.

Solution:

Following are steps in the design

1. Design Constants and height of the tank
2. Moment Calculation
i. Moment calculation for long wall
ii. Moment calculation for short wall
iii. Moment calculation for long wall corner.
3. Tank wall Thickness
4. Pull in each wall
5. Design of long wall
6. Design of short wall
7. Design of corner wall
8. Design of base slab
9. Design side walls of rectangular reinforced water tank of dimensions $6 \mathrm{~m} \times 2 \mathrm{~m}$ having a maximum depth of 2.5 m using M20 grade concrete and Fe 415 HYSD bars.

Draw a sketch of
a. Sectional plan of the tank
b. Longitudinal section of tank
c. Cross section of the tank.

HINGED PORTAL FRAME

HINGED PORTAL FRAMES

Problem

An RCC portal frame with a hinge base is required to suit the following data

Spacing of portal frames $=4 \mathrm{mc} / \mathrm{c}$
Height of columns $=4 \mathrm{~m}$
Distance between column centres $=10 \mathrm{~m}$
Live load on the roof $=1.5 \mathrm{kN} / \mathrm{m}^{2}$
The RC slab is continuous over portal frames
SBC of soil $=200 \mathrm{kN} / \mathrm{m}^{2}$

Materials M20 and Fe 415 steel.

Design the slab, portal frame and foundations.

Draw to a suitable scale
i) Sectional elevation of half frame showing the details of reinforcement in footing, column and beam of portal frame.
ii) Transverse section of beam and column
iii) Sectional plan of footing and column

Design:-

Design of continous slab

Effective depth $=\frac{\text { Span }}{26}=\frac{4000}{26}=153.85 \mathrm{~mm}$
Assume 0.3% tension reinforcement, modification factor 1.4
Hence effective depth $=\frac{153.85}{1.4}=109.9 \mathrm{~mm}$
Assume a clear cover of 20 mm and 10 mm diameter bars.

Total depth $=109.9+20+\frac{10}{2}=134.9 \mathrm{~mm}$ say 150 mm

Dead load on the slab $=0.15 \mathrm{X} 24=3.6 \mathrm{kN} / \mathrm{m}^{2}$

Roof finishes	$=0.756 \mathrm{kN} / \mathrm{m}^{2}$
Ceiling finishes	$=0.256 \mathrm{kN} / \mathrm{m}^{2}$
Dead load $/ \mathrm{m}^{2}$	$\mathrm{~g}=4.6 \mathrm{kN} / \mathrm{m}^{2}$
Live load $/ \mathrm{m}^{2}$	$\mathrm{q}=1.5 \mathrm{kN} / \mathrm{m}^{2}$

Maximum Negative BM

$$
\begin{aligned}
& \mathrm{M}=\frac{g l^{2}}{10}+\frac{q l^{2}}{9} \\
& \mathrm{M}=4.6 \times \frac{4^{2}}{10}+1.5 \times \frac{4^{2}}{9} \\
& \mathrm{M}=10.03 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Maximum Positive BM

$$
\begin{aligned}
& \mathrm{M}=\frac{g l^{2}}{12}+\frac{q l^{2}}{10} \\
& \mathrm{M}=4.6 \times \frac{4^{2}}{12}+1.5 \times \frac{4^{2}}{10} \\
& \mathrm{M}=8.53 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Factored design moment $=1.5 \times 10.03=15 \mathrm{kN}-\mathrm{m}$
Assuming an effective depth as 0.9 times the total depth,
Ultimate resisting moment $=\frac{0.138 \times 1000 \times(0.9 \times 150)^{2} \times 20}{10^{6}}=50.3 \mathrm{kN}-\mathrm{m}>15 \mathrm{kN}-\mathrm{m}$, Hence ok.
Effective depth provided $=150-20-(10 / 2)=125 \mathrm{~mm}$

Design of reinforcement at top and bottom:-
$15 \times 10^{6}=0.87 \times 415 \mathrm{xA}_{\mathrm{st}} \mathrm{x} 125\left(1-\frac{\text { Ast } * 415}{1000 * 125 * 20}\right)$
$1.66 \times 10^{-4} \mathrm{Ast}^{2}-\mathrm{A}_{\mathrm{st}}+332.36=0$
Ast $=353 \mathrm{~mm}^{2}$

Spacing of $\# 10=\frac{\pi * 10^{2}}{4 * 353} * 1000=222.5 \mathrm{~mm}$

> Use \#10@ 200mmc/c

Distribution Steel:-

Ast $=\frac{0.12}{100} \times 1000 \times 150=180 \mathrm{~mm}^{2}$
Spacing of $\# 8=\frac{\pi * 8^{2}}{4 * 180} * 1000=279 \mathrm{~mm}$
Use \#8 @ 250mmc/c

Design of Portal Frame

Effective span of beam $=10 \mathrm{~m}$
Effective depth of the beam $=\frac{10000}{12}$ to $\frac{10000}{15}=833.33 \mathrm{~mm}$ to 666.7 mm

Effective depth $=700 \mathrm{~mm}$

Overall depth $=750 \mathrm{~mm}$
Width of beam $=450 \mathrm{~mm}$

Load on frame

Load from the slab $=(4.6+1.5) \times 4 \times 1 \quad=24.4 \mathrm{kN} / \mathrm{m}$
Self-weight of beam $=0.45 \times 0.63 \times 1 \times 25=7.1 \mathrm{kN} / \mathrm{m}$

Self-weight of finishes	$=0.5 \mathrm{kN} / \mathrm{m}$
Load $/ \mathrm{m}$	$=32 \mathrm{kN} / \mathrm{m}$

Height of centre line of beam above hinge, $\mathrm{h}=(4+0.10-0.5 \times 0.75)=3.72 \mathrm{~m}$

Design Moments and Shear force
Maximum Negative $\mathrm{BM}=177.8 \mathrm{kN}-\mathrm{m}$
Maximum positive moment at centre of span $=\frac{32 * 10^{2}}{8}-177.8=222.2 \mathrm{kN}-\mathrm{m}$

Maximum shear force at $\mathrm{B}=\frac{32 * 10}{2}=160 \mathrm{kN}$
Shear force at the hinge at $\mathrm{A}=\frac{177.8}{3.72}=47.8 \mathrm{kN}$
Factored moment at support $\mathrm{B}=1.5 \times 177.8=266.7 \mathrm{kNm}$

Factored moment at centre of span $=1.5 \times 222.2=333.3 \mathrm{kNm}$

Factored shear force at hinge at $\mathrm{A}=1.5 \times 47.8=71.7 \mathrm{kN}$
Factored shear force at support B $=1.5 \times 160=240 \mathrm{kN}$

DESIGN OF BEAMS

Central section:-

Assume dimensions of the beam are
$\mathrm{b}_{\mathrm{w}}=450 \mathrm{~mm}, \mathrm{~d}=700 \mathrm{~mm}, \mathrm{D}_{\mathrm{f}}=150 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{f}}=\frac{l_{o}}{6}+\mathrm{b}_{\mathrm{w}}+6 \mathrm{D}_{\mathrm{f}}=\frac{10000}{6}+450+(6 * 150)=3017 \mathrm{~mm}$
$\gamma=\frac{M_{u}}{b_{f} d^{2} f_{c k}}=\frac{333.33 * 10^{6}}{3017 x 700^{2} \times 20}=0.011$
$\gamma_{\text {lim }}=0.36\left(\frac{150}{700}\right)\left(1-0.42 \mathrm{x} \frac{150}{700}\right)=0.07$
$\gamma<\gamma_{l i m}$ hence NA is inside the flange.

Fig-2
$333.3 \times 10^{6}=0.87 \times 415 \times A \operatorname{stx} 700\left(1-\frac{A s t * 415}{3017 \times 700 \times 20}\right)$
Ast $=1336.3 \mathrm{~mm}^{2}$

Use $4 \#$ of 25 mm dia bars

Support section:-

$\mathrm{Mu}=266.7 \mathrm{kN}-\mathrm{m}$
$266.67 \times 10^{6}=0.87 \times 415 \times \operatorname{Astx} 700\left(1-\frac{\text { Ast } * 415}{450 \times 700 \times 20}\right)$

$$
\mathrm{A}_{\mathrm{st}}=1141 \mathrm{~mm}^{2}
$$

$$
\text { Use } 4 \# \text { of } 20 \mathrm{~mm} \text { dia bars }
$$

DESIGN OF SHEAR REINFORCEMENT:-

$\mathrm{Vu}=240 \mathrm{kN}$
$\tau_{\mathrm{c}=\frac{\mathrm{vu}}{\mathrm{bd}}}=\frac{240 \times 1000}{450 \times 700}=0.76 \mathrm{~N} / \mathrm{mm}^{2}$
$\frac{100 * \text { Ast }}{b d}=\frac{100 * 4 * \pi * 25^{2}}{4 * 450 * 700}=0.62$

Interpolation

$0.50 \quad 0.48$
0.62 ?
$0.75 \quad 0.56$
$\tau_{c}=0.52 \mathrm{~N} / \mathrm{mm}^{2}$
$V_{u s}=240 \times 10^{3}-(0.52 \times 450 \times 700)=76200$
$76200=0.87 \times 415 \times 2 \times \frac{\pi * 8^{2}}{4 * s_{v}} * 700$
$\mathrm{S}_{\mathrm{V}}=333 \mathrm{~mm}$

> Use 2L \#8 @ 300c/c

Design of Column

$\mathrm{Mu}=266.7 \mathrm{kN}-\mathrm{m}$
$\mathrm{Vu}=240 \mathrm{kN}$
Assume an effective cover of $50 \mathrm{~mm}, \mathrm{~d}^{\prime} / \mathrm{D}=50 / 600=0.10$
$\frac{M_{u}}{f_{c k} b d^{2}}=\frac{266.7 \times 10^{6}}{20 \times 450 \times 600^{2}}=0.082$
$\frac{P_{u}}{f_{c k} b d}=\frac{240 \times 10^{6}}{20 \times 450 \times 600}=0.044$

Referring to the chart given in SP16
$\frac{P}{f_{c k}}=0.04$
$\mathrm{P}=0.04 \times 20=0.8$
$\mathrm{Ast}=P \frac{b D}{100}=0.8 \times 450 \times \frac{600}{100}=2160 \mathrm{~mm}^{2}$

Use 4\#20 and \#8 @ 300 as ties

DESIGN OF HINGE:-

Permissible bearing stress at the hinge $=0.5 \mathrm{fck}=10 \mathrm{~N} / \mathrm{mm}^{2}$
Area of hinge $=\frac{160 * 10^{3}}{10}=16000 \mathrm{~mm}^{2}$
Area provided $=450 * 150>16000 \mathrm{~mm}^{2}$

Working shear at the hinge $=47.8 \mathrm{kN}$

Factored shear at the hinge $=71.7 \mathrm{kN}$
$\mathrm{A}_{\mathrm{sv}} \sin 45 \mathrm{x} 0.87 \mathrm{x} 415=71.7 \times 10^{3}$
$\mathrm{A}_{\mathrm{sv}}=280.9 \mathrm{~mm}^{2}$
Use 4\# 12mm dia

Spiral consisting of 10 mm dia with 6 mm diameter

Design of foundation

Axial load on the column $=160 \mathrm{kN}$

Weight of column $=0.45 \times 0.6 \times 3.72 \times 24=24 \mathrm{kN}$

Self-weight of foundation 10%	$=16 \mathrm{kN}$
Total load	$=200 \mathrm{kN}$
Moment about the base $(\mathrm{M})=47.8^{*} 1$	$=47.8 \mathrm{kN}-\mathrm{m}$

Eccentricity e $=\frac{M}{P}=\frac{47.8}{200}=0.239 \mathrm{~m}$
Breadth of foundation $=6 \times 239=1434 \mathrm{~mm}$

Provide a foundation of 1 mX 2 m
Intensity of maximum pressure $=\frac{1.5 \times 200}{1 * 2}=150 \mathrm{kN} / \mathrm{m}^{2}<200 \mathrm{kN} / \mathrm{m}^{2}$

$$
\mathrm{p}^{\prime}=\frac{1.3}{2} \mathrm{X} 150=97.5 \mathrm{kN} / \mathrm{m}^{2}
$$

Total pressure on cantilever portion $=\left(\frac{97.5+150}{2}\right) * 0.7=86.6 \mathrm{kN}$
$\mathrm{BM}, \mathrm{Mu}=\left(86.6 * \frac{0.7}{2}\right) * 1.5=45 \mathrm{kN}-\mathrm{m}$

Effective depth required $=\sqrt{\frac{45 \times 10^{6}}{0.138 \times 20 \times 1000}}=127.6 \mathrm{~mm}$
From the shear considerations; double the effective depth say $D=300 \mathrm{~mm}$

Design of main reinforcement

$45 \mathrm{X} 10^{6}=0.87 \mathrm{X}^{2} 15 \mathrm{XA}_{\mathrm{st}} \mathrm{X} 250\left(1-\frac{\text { Ast }}{1000 \times 250} \times \frac{415}{20}\right)$
$\mathrm{A}_{\mathrm{st}}=521 \mathrm{~mm}^{2}$
Spacing of $\# 12=\frac{\pi * 12^{2}}{4 * 521} * 1000=217 \mathrm{~mm}$

Spacing of $\# 10=\frac{\pi * 10^{2}}{4 * 360} * 1000=218 \mathrm{~mm}$

HINGED PORTAL FRAME

Module 2
 Design of Steel Structures Design of Roof Trusses:

Following points are followed while designing the roof truss

1. Select double angle for top chord and bottom chord members and single angle for inner members.
2. Provide minimum two number of bolts for the connection in Bolted roof truss.
3. Take effective length $\mathrm{t}_{\mathrm{e}}=0.85 \mathrm{l}$
4. Provide uniform thickness of gusset plate
5. Select minimum size of angle i.e. ISA $50 \times 50 \times 6 \mathrm{~mm}$
6. Design only four member's i.e.
a. Outer Maximum Compression Member
b. Outer Maximum Tension Member
c. Inner maximum compression member
d. Inner maximum tension member
7. The Centre line diagram of the steel truss is shown in figure. The magnitude and nature of forces in different members of the truss are given in table. The size of the RC column supporting the truss is 300×300 mm . Use M20 concrete for Column.
Design the truss using bolted or welded connection. Also design anchor bolts for an uplift force of 15 KN at each support.

Draw rough sketches of following
a. Elevation of truss greater than half span.
b. Enlarged view of apex joint of the truss.
c. Enlarged view of the left support joint.

$$
\mathrm{AC}=\mathrm{CD}=\mathrm{DE}=\mathrm{EB}
$$

Member	Force (KN)	Length (m)
AC,EB	-80 KN	3.46
CD,DE	-70 KN	3.46
AF,GB	+70 KN	4
FG	+50 KN	4
CF,EG	-24 KN	2
DF,DG	+24 KN	4

Reaction, $\mathrm{Ra}=\mathrm{Rb}=50 \mathrm{KN}$
-ve = Compession, +ve = Tension

Soln:

1. Design of outer Compression Member (Top Chord Member)

The members are AC, CD,DE and EB
Member $\mathrm{AC} \Longrightarrow 80 \mathrm{KN}(\mathrm{C}) \Longrightarrow \mathrm{L}=3.46 \mathrm{~m}$
Member $\mathrm{CD} \Longrightarrow 70 \mathrm{KN}(\mathrm{C}) \Longrightarrow \mathrm{L}=3.46 \mathrm{~m}$
Select maximum force $=80 \mathrm{KN}$
\therefore Factored force $=1.5 \times 80=120 \mathrm{KN}$
Maximum length $=3.48 \mathrm{~m}$
Design the top chord as the compression member using double angle and bolts
i. Selection of Section:

Assume $f_{c d}=60 \mathrm{~N} / \mathrm{mm}^{2}$
Using $\quad P_{d}=A_{c} f_{c d}$ \qquad Page no. 34, IS 800

$$
\begin{aligned}
& 120 \times 10^{3}=A_{c} \times 60 \\
& A c=2000 \mathrm{~mm}^{2} \text { or } 20 \mathrm{~cm}^{2}
\end{aligned}
$$

From Steel tables select suitable double angle section.

Let us try 2ISA $70 \times 70 \times 8 \mathrm{~mm}$
$\therefore A c=2116 \mathrm{~mm}^{2}$
Assume gusset plate thickness $=10 \mathrm{~mm}$

From steel table $r_{x x}=21.2 \mathrm{~mm}$

$$
r_{y y}=32.9 \mathrm{~mm} \quad(\text { For } 10 \mathrm{~mm} \text { gap) }
$$

$\therefore r_{\text {min }}=21.2 \mathrm{~mm}$
Length of the member $\mathrm{L}=3.46 \mathrm{M}=3460 \mathrm{~mm}$
\therefore Effective Length Le $=0.85 \mathrm{~L}=0.8$ * 3460

$$
=2941 \mathrm{~mm}
$$

\therefore Slenderness ratio $=\lambda=\frac{L e}{r_{\text {min }}}=\frac{2941}{21.2}$

$$
\lambda=138.72
$$

From table 9C (Page 42 IS 800)
For 130 -- fcd = 74.2
For 140 -- fcd $=66.2$
\therefore For $138-\mathrm{fcd}=67.23 \mathrm{~N} / \mathrm{mm}^{2}$
\therefore Design Compressive Strength $\mathrm{Pd}=\mathrm{Ac} * \mathrm{fcd}$

$$
\begin{aligned}
= & 2116 * 67.23 \\
= & 142.25 \times 10^{3} \mathrm{~N}>120 \mathrm{KN} \\
& \text { Hence Safe. }
\end{aligned}
$$

ii. Design of Connection:

Using m-16 Bolts and Grade 5.6 black bolts
$\mathrm{d}=16 \mathrm{~mm}, \mathrm{do}=16+2=18 \mathrm{~mm}$ and $\mathrm{fu}=500 \mathrm{~N} / \mathrm{mm}^{2}$
fu for plate $=410 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{e}=1.5 *$ do $=1.5 * 18=27 \mathrm{~mm}$ say $\mathrm{e}=30 \mathrm{~mm}$
$p=2.5 * d=2.5 * 16=40 \mathrm{~mm}$
From IS 800, Page 75
Shear strength of Bolt

$$
\mathrm{V}_{\mathrm{dsb}}=\frac{1}{\gamma_{m b}}\left[\frac{f u b^{\Downarrow}}{\sqrt{3}}\left(\mathrm{n}_{\mathrm{n}} \mathrm{~A}_{\mathrm{nb}}+\mathrm{n}_{\mathrm{s}} \mathrm{~A}_{\mathrm{sb}}\right)\right]
$$

Assume fully threaded bolts and double shear

$$
\mathrm{n}_{\mathrm{n}}=2 \text { and } \mathrm{n}_{\mathrm{s}}=0
$$

$\mathrm{V}_{\mathrm{dsb}}=\frac{1}{1.25}\left[\frac{500}{\sqrt{3}}\left(2 * \frac{\pi 16^{2}}{4} * 0.78+0\right)\right]$
$=72.43 \mathrm{KN}$

Similarly Bearing Strength
$\mathrm{V}_{\mathrm{dpb}}=\frac{1}{\gamma_{m b}}\left[2.5 * \mathrm{k}_{\mathrm{b}}{ }^{*} \mathrm{~d}^{*} \mathrm{t}^{*} \mathrm{fu}\right)$... Page 75 IS 800
k_{b} is taken as least of the following

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{b}}=\frac{e}{3 d o}=0.55 \\
& \mathrm{k}_{\mathrm{b}}=\frac{p}{3 d o}-0.25=0.49 \\
& \mathrm{k}_{\mathrm{b}}=\frac{f u b}{f u}=1.21 \\
& \mathrm{k}_{\mathrm{b}}=1
\end{aligned}
$$

$$
\therefore \mathrm{k}_{\mathrm{b}}=0.49
$$

$\therefore \quad V_{\mathrm{dpb}}=\frac{1}{1.25}\left[2.5^{*} 0.49 * 16^{*} 8^{*} 410\right)=51.43 \mathrm{KN}$ or $51.43 \times 10^{3} \mathrm{~N}$
\therefore Bolt value $=51.43 \mathrm{KN}$ (Least of shear and Bearing Strength)
No. of Bolts $=\frac{\text { Force }}{\text { Bolt Value }}=\frac{120 * 10^{\wedge} 3}{51.43 * 10^{\wedge} 3}=2.3 \approx 3 \mathrm{Nos}$
Hence adopt 2ISA $70 \times 70 \times 8 \mathrm{~mm}$ for top chord.

2. Design of Outer Tension Member (Bottom Chord Member)

The bottom chord members are $\mathrm{AF}=\mathrm{FG}=\mathrm{GB}$
$\mathrm{AF}=70 \mathrm{KN}(\mathrm{T}), \mathrm{L}=4 \mathrm{~m}$
$\mathrm{FG}=50 \mathrm{KN}(\mathrm{T}), \mathrm{L}=4 \mathrm{~m}$
$\mathrm{GB}=70 \mathrm{KN}(\mathrm{T}), \mathrm{L}=4 \mathrm{~m} \alpha$

$$
\text { Maximum force }=70 \mathrm{KN}
$$

\therefore Factored force $=1.5 * 70=105 \mathrm{KN}$

$$
\text { Maximum Length }=4 \mathrm{~m}
$$

i. Selection of Section:

$$
\begin{gathered}
\text { Using } \mathrm{T}_{\mathrm{dn}}=\frac{\alpha A n f u}{\gamma_{m l}} \ldots \ldots \ldots . \quad \text { Page } 33 \text { IS } 800 \\
\text { Here } \mathrm{T}_{\mathrm{dn}}=\text { Factored Load }=105 \times 10^{\wedge} 3 \mathrm{~N} \\
\alpha=0.7 \text { and } \gamma_{m l}=1.25
\end{gathered}
$$

$$
105 \times 10^{\wedge} 3=\frac{A n f u}{\gamma_{m l}}
$$

$$
\begin{array}{r}
=105 * 10^{3} \Rightarrow \frac{0.7 \mathrm{An} \times 410}{1.25} \\
A_{n}=457.3 \mathrm{~mm}^{2}
\end{array}
$$

Increase the above area by 30% approximately

$$
\therefore \text { (Area) }=1.3 * 457.3
$$

Gro

Gross Area $=594.49 \mathrm{~mm}^{4}$
From steel table, try double angle
select minimum size 2 SSA $50 \times 50 * 6 \mathrm{~mm}$

$$
\therefore \text { Area }=1136 \mathrm{~mm}^{2}
$$

ii) Connections.

Providing $m-16$ grade 8.8 HSFG bolts ($p-76$]

$$
\begin{aligned}
& \therefore d=16 \mathrm{~mm}: d_{0}=18 \mathrm{~mm}: f_{u}=800 ; \mu_{f}=0.55, K_{h}=1, n_{e}-2 \\
& \text { shear strength }=V_{d s}=\frac{1}{V_{m f}}\left[\mu_{f} n_{e} K_{h} F_{0}\right] \\
& F_{0}=\text { Ant fur } \\
& =0.78 \frac{\pi d^{2}}{4} * 800 \times 0.7 \quad=\frac{1}{1.25}\left[0.55 * 2 * 1 * 87.823 * 10^{3}\right] \\
& F_{0}=87.823 * 10^{3} \\
& V_{d s f}=77.28 * 10^{3} \mathrm{~N}
\end{aligned}
$$

Bolt value $=77.28 * 10^{3} \mathrm{~N}$

$$
\text { No. of bolts }=\frac{\text { Force }}{\text { Value Bolt }}=\frac{105 * 10^{3}}{77.28 * 10^{3}}=1.35
$$

Say 2 no of bolts:
iii) Check for rupture (Bg-33)

$$
T_{d n}=\left[\frac{0,9 \text { Anctu }}{\gamma_{m l}}+i \beta \text { Ago } \frac{f_{y}}{\gamma_{m 0}}\right] * 2 \rightarrow \begin{aligned}
& \text { Due to } \\
& \text { double } \\
& \text { angle }
\end{aligned}
$$

$$
\begin{aligned}
\beta & =1.4-0.076\left[\frac{L_{v}}{t}\right]\left[\frac{f_{4}}{f_{u}}\right]\left[\frac{b}{L_{c}}\right] \\
W=50 \mathrm{~mm}, T & =6 \mathrm{~mm}, f y=250 \mathrm{~N} / \mathrm{mm}^{2} ; \quad f_{u}=410 . \\
b_{s} & =W+\left(W_{1}-T\right) \\
& =50+28-6 \quad b_{s}=72
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
=1.4-0.076\left[\frac{70}{6}\right]\left[\frac{250}{410}\right]\left[\frac{72}{40}\right] \\
\beta=0.704 \\
A g g o=(B-t / 2) * t=(50-6 / 2) * 6 \Rightarrow A_{0}=282 \mathrm{~mm}^{2} \\
\text { Adan } A n c=\left(A-d_{0}-t / 2\right) * t=(50-18-6 / 2) * 6 \\
A_{d n c}=174 \mathrm{~mm}^{2}
\end{array}\right]+\frac{0.704 \times 282 * 250] * 2}{1.10}\right]
$$

$\therefore T_{d n}>105 \mathrm{KN}$ Hence safe.

$$
\therefore \quad \therefore \text { Td by }=147.94 * 10^{3} \mathrm{~N}>10 \text { adopt } 2 \text { SSA } 50 * 50 * 6 \mathrm{~mm} \text { for bottom chord }
$$

3] Design of Inner Tension Member.

$$
\begin{align*}
& \text { Inner } L=4 \mathrm{~m} \\
& D G=24 \mathrm{KN}(T) ; L \mathrm{kN}(T) ; L=4 \mathrm{~m} \tag{T}\\
& D 6 \mathrm{kN}
\end{align*}
$$

\therefore Factored force $=24 \times 1.5 \Rightarrow W=36 \mathrm{KN}$
i) Selection of section Assume $\alpha=0.6$

$$
\begin{aligned}
& \text { Lion of section Assume } \alpha=0.6 \\
& T_{d n}=\frac{\alpha \text { Anfu }}{\nabla_{\mathrm{mL}}} \Rightarrow 36 \times 10^{3}=\frac{0.6 \mathrm{An} * 41 \mathrm{C}}{1.25} \\
& A_{n}=182.9 \mathrm{ntm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { iv) Check for block shear [P-33] } \\
& T_{d b_{l}}=2\left[\frac{A_{v g} f y}{\sqrt{3} * \nu_{m 0}}+\frac{0.9 A_{t n} f_{u n}}{\nu_{m L}}\right] \\
& A_{v g}=L_{v *} t \\
& =70 * 6 \\
& \text { Arg }=420 \mathrm{~mm}^{2} \\
& T_{d b_{2}}=2\left[\frac{0.9 A v n f u}{\sqrt{3} * \nu_{m L}}+\frac{\text { Atm } f y}{v_{m o}}\right] \\
& A_{v n}=420-1.5 \times 18 \times 6 \\
& A_{v n}=258 \mathrm{~mm}^{2} \\
& \text { Ag= } L_{t} * t=22 * 6 \Rightarrow \frac{\text { Atm }=132 \mathrm{~mm}^{2}}{78 \mathrm{~mm}} \\
& \text { Ain }=132-(0.5 * 18 * 6) \Rightarrow A_{t n}=78 \mathrm{~mm}^{2} \\
& T_{d b_{1}}=2\left[\frac{420 * 250}{\sqrt{3} * 1.10}+\frac{0.9 * 78 * 410}{1.25}\right] \\
& J_{d_{b_{1}}}=156.27 \times 10^{3} \mathrm{~N}>105 \times 10^{3} \mathrm{~N} \\
& T_{d b_{2}}=2\left[\frac{0.9 * 258 * 410}{\sqrt{3} * 1.25}+\frac{132 * 4+\theta}{1.10}\right] \\
& 0=T_{\text {dib }}=147.94 * 10^{3} \mathrm{~N}>105 * 10^{3} \mathrm{~N} \text {. Hence Date }
\end{aligned}
$$

Increase the area 30% approximately

$$
\begin{aligned}
\text { Area } & =1.3 \times 182.9 \\
\text { GrossArea } & =237.77 \mathrm{~mm}^{2}
\end{aligned}
$$

From steel table, select single angle
Try minimum size ISA $50 \times 50 \times 6 \mathrm{~mm}$

$$
\therefore \text { Area }=568 \mathrm{~mm}^{2}
$$

ii) Welded Connection

Take ore of roeld, $S=3 / 4 *$ angle thickness

$$
\begin{aligned}
& =3 / 4 * 6 \\
S & =4.5 \mathrm{~mm} \simeq S=4 \mathrm{~mm}
\end{aligned}
$$

Equating, Force $=$ strength of the weld

$$
\begin{array}{rlr}
36 * 10^{3} & =\frac{0.7 \mathrm{~s} L \mathrm{fu}}{\sqrt{3} \gamma m \omega} & \text { shop Weld, } v_{m L} \\
36 * 10^{3} & =\frac{0.7 * 4 * L * 410}{\sqrt{3} * 1.25} & 1.25 \\
L & =67.89 \simeq 70 \mathrm{~mm} \rightarrow \text { (1) } \tag{1}
\end{array}
$$

Take moment about 1-1.

$$
\left.\begin{array}{rl}
\left(F_{2} * 50\right)-\left(36 \times 10^{3}\right) * 35.5 & =0 \\
* & =\frac{0.7 \times 4 * L * 410}{\sqrt{3} * 1.25}-\left(36 * 10^{3} * 35.5\right)=0 \\
L_{2} & =48.2 \mathrm{~mm} \simeq L_{1}
\end{array}\right)=50 \mathrm{~mm} .
$$

iii) Check for rupture.

$$
\operatorname{Tdn}=\left[\frac{0.9 \text { Ancfu }}{\nu_{m l}}+\frac{\beta \text { Agofy }}{\gamma_{m o}}\right]
$$

$$
\begin{aligned}
& \beta=1.4-0.076\left[\frac{L_{V}}{t}\right]\left[\frac{f y}{f u}\right]\left[\frac{b_{c}}{L_{c}}\right] \\
& =1.4-0.076\left[\frac{50}{6}\right]\left[\frac{250}{410}\right]\left[\frac{50}{70}\right] \\
& \beta=1.124 \\
& A g_{0}=(B-t / 2) * t=(50-6 / 2) * 6 \Rightarrow A g_{0}=282 \mathrm{~mm}^{2} \\
& L_{c}=\text { weld lengls } \\
& =L_{1}+L_{2}=70 \mathrm{~mm} \\
& A n c=\left[A-d_{0}-t / 2\right] t=[50-0-6 / 2] \times 6 \Rightarrow A n c=282 \mathrm{~mm}^{2} . \\
& T_{d} n=\left[\frac{0.9 * 282 * 410}{1.25}+\frac{1.124 * 282 * 44250}{1.10}\right] \\
& { }^{\times} T_{d n}=155.34 \times 10^{3} \mathrm{~N}>36 \mathrm{KN} \text { Hence safe }
\end{aligned}
$$

iv) Check for block shear.

$$
\begin{aligned}
& T_{d b_{1}}=\left[\frac{A v g f y}{\sqrt{3} * \gamma_{m 0}}+\frac{0.9 A_{t n} f u}{\gamma_{m L}}\right] \\
& T_{d b_{2}}=\left[\frac{0.9 \mathrm{Avnfu}}{\sqrt{3} * \gamma_{\mathrm{mL}}}+\frac{\text { Avg fy }}{\gamma_{\mathrm{mo}}}\right] \\
& A_{v g}=A_{v n}=L_{V} * t \Rightarrow 70 * 6=420 \mathrm{~mm}^{2} \\
& A t g=A t_{n}=L_{t * E} \Rightarrow 50 * 6=300 \mathrm{~mm}^{2} \\
& T_{d b_{i}}=\left[\frac{420 * 250}{\sqrt{3} * 1.10}+\frac{0.9 * 300 \times 250}{\sqrt{1} * 1.25}\right] \frac{T_{d b_{i}}=109,110 \mathrm{kN}>36 \mathrm{ku}}{} \\
& T_{d b_{2}}=\left[\frac{0.9 * 420 * 410}{\sqrt{3} * 1.25}+\frac{42.300 * 250}{1.10}\right] \Rightarrow \frac{T_{d b_{2}}=139.76 \mathrm{KN}>}{36 \mathrm{KN}} \\
& \text { Hence page }
\end{aligned}
$$

\therefore adopt ISA $50 * 50 * 6 \mathrm{~mm}$ for inner tension member 4] Design of Inner Compression Member [$\mathrm{Pg}-48$]
Loaded through one leg.

$$
\begin{aligned}
& C F=-24 K N(C), L=2 m \\
& G E=-24 \mathrm{KN}(C), L=2 \mathrm{~m}
\end{aligned}
$$

i) Selection of section:

Assume, $\mathrm{fect}=20 \mathrm{~N} / \mathrm{mm}^{2}$

Using $P_{d}=A c$ fed $\rightarrow\left(P_{c} 34\right)$

$$
\begin{aligned}
36 * 10^{3} & =A_{c} * 20 \\
A_{C} & =1,800 \mathrm{~mm}^{2}
\end{aligned}
$$

from steel table select single angle, try ISA $70 \times 70 * 8 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Area }=1058 \mathrm{~mm}^{2} \\
& \gamma_{x}=\gamma_{y}=21.2 \\
& \gamma_{v r}=13.5 ; \gamma_{u}=26.7
\end{aligned}
$$

ii) Fed C.akulation $\left[\mathrm{P}_{9}, 48\right.$ 38 34$]$
design compressive stress, fed is Calculated by

$$
f c d=\frac{\phi y / \nu_{m o}}{\phi+\left[\phi^{2}-\lambda_{c}^{2}\right]^{0.5}}
$$

the flexural to torsion buckling strength of single to angle loaded in compression through me of its lea away may be evaluated using the equivalent Geindernit ratio (λe)

$$
\begin{array}{ll}
x_{c}=\sqrt{k_{1}+k_{2} \lambda_{1 v} v^{2}+k_{3} \lambda \phi^{2}} \quad\left[R_{q}-48\right] \\
\ell=\ell_{e}=1.7 \mathrm{~m} ; & b_{1}=b_{2} \pm 70 \mathrm{~mm}(\cos / B \mathrm{k}) ; \\
\varepsilon=1 ; & \gamma_{r v}=13.5 \mathrm{~mm} ; t=8 \mathrm{~mm} \\
E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}
\end{array}
$$

Take no of bolts greater than or equal to 2 \& fixed condition: from table 12 [Aq 48]

$$
\begin{aligned}
& K_{1}=0.2 ; \quad K_{2}=0.35 ; \quad K_{3}=20
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{v V}=1.417 \\
& \hat{A}_{\phi}=\frac{\left(b_{1}+b_{2}\right) / 2 t}{\varepsilon \sqrt{\frac{\pi^{2} E}{250}}}=\frac{(70+70) / 2 * 8}{\sqrt{\frac{\pi^{2} * 2 \times 10^{5}}{250}}}=0.098 \\
& \therefore \text { Equivalence Slenderence ratio: }\left(\lambda_{c}\right)=\sqrt{k_{1}+k_{2} \lambda_{1}} \\
& =\sqrt{\left.0.2+0.35 *(1.417)^{2}\right)^{\text {㭗 } 20 *(0.098)^{2}}} \\
& \lambda_{c}=1.046 \simeq 1.05
\end{aligned}
$$

[Pg 34] Taking $\alpha=$ imperfection factor for buckling class C

$$
\alpha=0.49
$$

[From Pg. no 34]

$$
\begin{aligned}
& \text { Pg.n0 34] } \begin{aligned}
\phi & =0.5\left[1+\alpha+(\lambda c-0.2)+\lambda e^{2}\right] \\
& \left.=0.5[1+0.49 *(1.05-0.2)]+1.05^{2}\right] \\
\phi & =1.26 \\
\text { fed }= & \frac{6 y / 1 m 0}{\phi\left[\phi^{2}-\lambda_{c}^{2}\right]^{0.5}}=\frac{250 / 1.10}{1.26\left[(1.26)^{2}-1.05^{2}\right] 0.5}=116.20 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\end{aligned}
$$

\therefore Design compressive force.

$$
\begin{aligned}
& P_{d}=A_{c} \text { fed }=1058 * 116.20 \\
& P_{d}=122.93 * 10^{3} \mathrm{~N}>36 * 10^{3} \mathrm{~N}
\end{aligned}
$$

Hence safe.
iii) Design of connection.

Using M16, Grade 8.8 , HSFG bolts
\therefore Bolt value/ Shear strength $=V_{d s}=\frac{1}{\nu_{m f}}$ [Mfnekh to]
$F_{0}=A n b f u$

$$
=\frac{1}{1.25}\left[0.55 \times 1 \times 1 \times 87.823 \times 10^{3}\right]
$$

$$
\begin{aligned}
& =0.78 \frac{\pi d^{2}}{4} \times 0.7 * 800 \\
& F_{0}=87.823 \times 10^{3} ; M_{f}=0.55 ; K_{h}=1 \quad V_{d s}=38.64 \mathrm{kN} \\
& n_{e}=1 \\
& \text { No if bolts }=\frac{\text { Force }}{\text { Bolt value }}=\frac{36 \times 10^{3}}{38.64 \times 10^{5}}=0.931
\end{aligned}
$$

Provide min ne of bolts $-2 \mathrm{nos}^{\mathrm{s}}$
5] Design of supports.
i) Design of base slab.

Area of base slab
Given reaction $=50 \mathrm{KNV} 50 \mathrm{KN}$
Factored Reaction $=750 \mathrm{KN}$
For $M-20$ conceretc, $f c k=20 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
& \text { Bearing Capacity of concerete }=48 \% \text { of } \mathrm{fck} \\
&=0.45 \times 20 \\
&=9 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Area of base slab }=\frac{10 \mathrm{ad}}{0.45 \mathrm{ck}}=\frac{75 \times 10^{3}}{0.45 * 90} \\
& \text { Area }=8333.33 \mathrm{~m}^{2} \mathrm{~m}
\end{aligned}
$$

Providing equare plate.

$$
\begin{aligned}
& \text { square plate. } \\
& \text { size of plate }=\sqrt{8.33 \times 10^{3}} \\
& \\
& =91.28 \mathrm{~mm}
\end{aligned}
$$

$$
=91.28 \mathrm{~mm}
$$

\therefore Provide minimum $200 \mathrm{~mm} * 200 \mathrm{~mm}$
Thickness of Base plate (depends upon B.M)

Equating $M_{x}=M d$
Consider $1 \mathrm{~m}^{\text {t }}$ strip

$$
\begin{aligned}
& =1.88 \mathrm{~N} / \mathrm{mm}^{2} \times 1 \mathrm{~mm} \\
& =1.88 \mathrm{~N} / \mathrm{mm}
\end{aligned}
$$

Moment along $x-x$.

$$
\begin{aligned}
\left(M_{x-x}\right) & =1.88 * 80 * 80 / 2 \\
M_{x} & =6016 \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

$$
\left[M_{d}=P_{g} \cdot n_{0} 5^{3}\right]
$$

$$
\begin{array}{ll}
6016 \mathrm{~N}-\mathrm{mm}=1.2 z_{e} \frac{\gamma y}{\gamma_{m 0}} & \text { [PG no 53] } \\
6016=1.2 * z_{e} * \frac{250}{\gamma m_{0}} \quad \text { where } z_{e}=\frac{I}{y}=\frac{b d^{3} / 12}{d / 2} \\
6016=1.2 * \frac{1 *(t+8)^{2}}{6} * \frac{250}{1.10} & z_{e}=\frac{b d^{2}}{6} \\
t=3.50 \mathrm{~mm} \cong \\
\text { Say } t=5 \mathrm{~mm} & z_{e}=\frac{1 \mathrm{~mm} *(t+8)^{2}}{6}
\end{array}
$$

\therefore Provide base φ Lab $200 * 200 * 5 \mathrm{~mm}$ zen a
b) Anchor Bolt

Given uplift force $=15 \mathrm{KN}$
\therefore Force in bolt $=\frac{15}{4}=3.75 \mathrm{KN}$
[There are 4 bolts at each end
\therefore Ultimate Force $=1.5 \times 3.75$

$$
=5.63 \mathrm{kN}
$$

From is 456 for $M-20$ concrete

$$
\left(\tau_{b d}\right)_{\text {Bond stress }}=1.2 \mathrm{~N} / \mathrm{mm}^{2} * 1.60 /[\mathrm{gg} 00.4284 \mathrm{j}]
$$

A $^{F} \rightarrow$ extern Cl

Equating, External force $=$ Resisting force

Bolt * height *
Bond stress

$$
\begin{aligned}
5.63 * 10^{3} \mathrm{~N} & =\pi D * h * \tau_{b d} \\
5.63 * 10^{3} & =\pi(16) * h * 1.92 \\
h & =58.33 \text { pay }
\end{aligned}
$$

$$
h=60 \mathrm{~mm}
$$

Hence provideeeach end $4-16 \mathrm{~mm} \phi, 60 \mathrm{~mm}$ length anchor bolts

ROOF TRUSS TYPE 2

1. Force in a members as dead load and live load and also wind load is given below. Take tension as positive and compression as negative. Design the truss and support, given upward reaction at support is equal to 180 KN . Uplift pressure 50 KN . Use M-16 bolt for connection.

Draw the sketches of the following
a. Half elevation of the truss
b. Enlarged view of apex joint
c. Enlarged view of end joint \& Intermediate joint.

Member	Dead load (KN)	Live load(KN)	Wind load (KN)	Length (m)
AC	+9.4	-30	+50.4	3.46
CD	-15.7	-23.8	+43.4	3.46
CF	-6.93	-10.4	+19.9	2
DF	+3.74	+5.64	-11.4	4
AF	+17.35	+26.4	-42.8	4
FG	+10.39	+15.8	-21.5	4

Soln:

1. Load Calculation [DL + LL and DL + WL]

2. Design of Top Chord Member:

After the load calculation, select the maximum value
Tension force $=59.8 \mathrm{KN}$, Factored Force $=1.5$ * $59.8=89.70 \mathrm{KN}$
Compressive Force $=39.5 \mathrm{KN}$, Factored Force $=1.5 * 39.5=59.25 \mathrm{KN}$
Maximum length $=\mathrm{L}=3.46 \mathrm{~m}$
\therefore Effective length $=\mathrm{L}_{\mathrm{e}}=0.85 * 3.46=2.941 \mathrm{~m}=2941 \mathrm{~mm}$
Since tension force is more than compressive force, start the design like a tension member and then check for compressive force.
a. Design of Tension Member:

Using $\mathrm{T}_{\mathrm{dn}}=\frac{\alpha A n f u}{\gamma_{m l}} \ldots \ldots \ldots \ldots . \quad$ Page 33 IS 800

Here $\mathrm{T}_{\mathrm{dn}}=$ Factored Load $=89.70 \times 10^{\wedge} 3 \mathrm{~N}$

$$
\alpha=0.6 \text { and } \gamma_{m l}=1.25
$$

$89.70 \times 10^{\wedge} 3=\frac{0.6 * A n * 410}{1.25}$
$\therefore A n=455.792 \mathrm{~mm}^{2}$
Increase the area approximately by 30%
$\mathrm{V}_{\mathrm{dsf}}$ Gross area $\mathrm{Ag}=1.3 * 455.792=592.54 \mathrm{~mm}^{2}$
From Steel table, Select double angle
Taking minimum size that is 2 ISA $50 \times 50 \times 6 \mathrm{~mm}$
Area $=1136 \mathrm{~mm}^{2}$
Also $r_{x x}=15.1 \mathrm{~mm}$ and $r_{y y}=24.6 \mathrm{~mm}$ (For a gap of 10 mm)

b. Design of Connections:

Given M 16 bolts, Assume grade 8.8 HSFG bolts

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{dsf}}=\frac{1}{\gamma_{m f}}\left[\mu_{\mathrm{f}} \mathrm{n}_{\mathrm{e}} \mathrm{~K}_{\mathrm{h}} \mathrm{~F}_{\mathrm{o}}\right], \quad \mu_{\mathrm{f}}=0.55, \mathrm{n}_{\mathrm{e}}=2, \mathrm{~K}_{\mathrm{h}}=1 \text { and } \\
& \mathrm{F}_{\mathrm{o}}=0.7 * \mathrm{fu} * \mathrm{An}=0.7 * 800 * \frac{\pi * 16^{2}}{4}=87.82 \times 10^{3} \mathrm{~N} \\
& \mathrm{~V}_{\mathrm{dsf}}=\frac{1}{1.25}\left[0.55 * 2 * 1 * 87.823 \times 10^{3}\right] \\
& \mathrm{V}_{\mathrm{dsf}}= \\
& =77.284 \mathrm{KN}
\end{aligned}
$$

Therefore Bolt Value $=77.284 \mathrm{KN}$
No. of Bolts $=\frac{\text { Force }}{\text { Bolt Value }}=\frac{89.71}{77.284}=1.16$ Say 2 nos
\therefore Number of bolts $=2$ nos.

iii Check for Rupture

$$
\text { heck for Rupture } \quad W_{1}=50 \mathrm{~mm} ; \quad t=6 \mathrm{~mm} ; \quad W_{1}=28 \mathrm{~mm} ; \quad L_{c}=40 \mathrm{~mm} ; L_{E}=22 \mathrm{~mm}
$$

$L_{v}=70 \mathrm{~mm}$.

$$
\begin{aligned}
b_{S} & =W+\left(W_{1}-t\right) \\
& =50+(28-6) \\
b_{S} & =72 \mathrm{~mm}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\beta & =1.4-0.076\left[\frac{L_{v}}{t}\right]\left[\frac{f y}{f u}\right]\left[\frac{b}{L_{c}}\right] \\
& =1.4-0.076\left[\frac{70}{6}\right]\left[\frac{4250}{410}\right]\left[\frac{72}{40}\right] \\
\beta & =0.704
\end{aligned}
$$

$$
A g_{0}=(B-t / 2) * t=[50-6 / 2] * 6=282 \mathrm{~mm}^{2}=A g_{0}
$$

$$
A n c=\left(A-d_{0}-t / 2\right) * t=[50-18-6 / 2] * 6=A n c=134 \mathrm{~mm}^{2}
$$

$$
T_{d n}=\left[\frac{0.9 \operatorname{Anc\gamma } \gamma}{\gamma_{m L}}+\frac{\beta \operatorname{sgo\gamma } \gamma}{\gamma_{m 0}}\right] * 2
$$

$$
=\left[\frac{0.9 * 134 * 410}{1.25}+\frac{0.704 \times 282 * 250}{1.10}\right] * 2
$$

$$
J_{\perp n}=192.96 \mathrm{kN}>89.70 \mathrm{kN}
$$

iv Check for Block shear.

$$
\begin{aligned}
& A_{r g}=L_{r} * t=70 * 6=A_{r g}=420 \mathrm{~mm}^{2} \\
& A_{r n}=(420-1.5 * 18 * 6)=A_{m}=258 \mathrm{~mm}^{2} \\
& A_{t g}=L_{t} * t=22 * 6=A_{t g}=132 \mathrm{~mm}^{2} \\
& A_{t n}=[132-0.5 * 18 * 6]=A_{t n}=78 \mathrm{~mm}^{2} \\
& \therefore T_{d b_{1}}=2 *\left[\frac{A r g+y}{\sqrt{3} * \gamma_{m o}}+\frac{0.9 A t_{u}}{r_{m n}}\right] \\
& \left.T_{d b_{1} 7} 156.27 \mathrm{kN}>89.70 \mathrm{kN}\right]
\end{aligned}
$$

$$
\begin{aligned}
& T_{d b_{2}}=2 *\left[\frac{0.9 A_{\mathrm{vn}} f_{u}}{\sqrt{3} \gamma_{\mathrm{ml}}}+\frac{A_{t q} f y}{\gamma_{m 0}}\right] \\
& T_{d b_{2}}=147.74 \mathrm{kN}>89.70 \mathrm{kN}
\end{aligned}
$$

Hence safe.
v] Check for compression

$$
\text { Force }=59.25 \mathrm{KN}
$$

knowing 2ISA $50 \times 50 \times 6 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Area }=1136 \mathrm{~mm}^{2} ; \quad r_{\min }=15.1 \mathrm{~mm} \text { [least of } \gamma_{x x}+\gamma_{y y} \text {] } \\
& \text { le }=294 \mathrm{~mm}^{2}
\end{aligned}
$$

\therefore Slenderness Ratio, $\lambda=\frac{L_{e}}{r_{\min }}=\frac{2941}{15.1}$

$$
\pi=194.76
$$

From table 9.C [Pg. Mo, 92]

$$
\text { for } \begin{array}{rl}
190 & \rightarrow 39.70 \\
200 & 36.30
\end{array}
$$

Fed for $194.76 \rightarrow 38.08 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\text { fcc }=38.08 \mathrm{~N} / \mathrm{mm}^{2}
$$

\therefore Design compressive strength

$$
\begin{aligned}
P_{d} & =A_{c} * \text { fed } \\
& =1136 * 38.08 \\
P_{d} & =43.25 . \mathrm{kN} \ngtr 59.25 \mathrm{KN} \therefore \text { Unsafe }
\end{aligned}
$$

Hence unsafe under compression
Hence revise section with mere area.

$$
\begin{array}{r}
\therefore \text { try 2ISA } 60 \times 60 \times 8 \\
\gamma_{x x}=18 \mathrm{~mm}: \frac{\text { Area }=1792 \mathrm{~mm}^{2}}{\gamma_{y y}=28.9 \mathrm{~mm}} \\
\lambda=\frac{L_{e}}{\gamma_{\min }}=\frac{2941}{18} \Rightarrow \lambda=163.39
\end{array}
$$

From table 9 (c) table 42

$$
\begin{aligned}
& 160 \rightarrow \\
& 170 \rightarrow
\end{aligned}
$$

For $163.39=5453 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
& P_{d}=\frac{f c d=51.53 \mathrm{~N} / \mathrm{mm}^{2} /}{A_{c} * \mathrm{fcd}=1792 * 51.53} \\
& P_{d}=92.34 \mathrm{kN}>59.25 \mathrm{kN} \text { Hence Cafe }
\end{aligned}
$$

Hence adopt 2ISA $60 \times 60 \times 8 \mathrm{~mm}$ tor top chord member
3) Design of bottom chotd member

Max tension force $=43.75$, Factored force $=65.625 \mathrm{ko}$
compress force $=25.45=$ Factored force $=38.1751 \mathrm{ko}$
Max length $=4 \mathrm{~m}$

$$
\text { Le }=0.85 * 4 \Rightarrow \text { Le }=3.4 \mathrm{~m}=3400 \mathrm{~mm}
$$

Since tension force is more than compressive force, stare the design like a tension member \& then check jor compression trice.
i) Design of tension member: Selection of oection

$$
\begin{aligned}
& T_{d n}=\frac{\alpha \text { Anfu }}{\nu_{m L}} \quad \alpha=0.6 \\
& 65.625 * 10^{3}=\frac{0.6 \mathrm{An} * 410}{1.25} \\
& A n=333.46 \mathrm{~mm}^{2}
\end{aligned}
$$

Increase approximately by 30%

$$
\therefore \text { Gross Area }=1.3 \times 333.46
$$

$(\text { Area })_{\text {Gross }}-433.498 \mathrm{~mm}^{2}$
From steel table, select double angle.
Taking min coze. ie, 2 ISM $50 \times 50 \times 6 \mathrm{~mm}$

$$
\begin{equation*}
\text { Area }=1136 \mathrm{~mm}^{2} \tag{10}
\end{equation*}
$$

$$
\begin{gathered}
\gamma_{x x}=\left\{5,3 \mathrm{~mm}, \gamma_{y y}=24 \cdot[6 \mathrm{~mm}\right. \\
\gamma_{\text {min }}=15.1 \mathrm{gm}
\end{gathered}
$$

ia] Connection
Given M-16 bolts
Assume Grade 8.8 HSFG bolts

$$
V_{d s f=} 77.28 K N>65.625 \mathrm{KN}
$$

$$
\text { No of Bolts }=\frac{\text { Force }}{\text { Bolt value }}=\frac{65.625}{77.28}=0.849 \simeq .2
$$

iii] Check for Rupture.
iv) Check for Block shear.

Hence safe
v) Check for compression.

$$
\text { Force }=38.18 \mathrm{KN}
$$

knowing 2 IS $50 * 50 * 6 \mathrm{~mm}$.

$$
\text { Area }=1136 \mathrm{~mm}^{2} ; L_{e}=3400 \mathrm{~mm} ; \gamma_{\mathrm{min}}=15.1 \mathrm{~m}
$$

colenderness ratio, $\lambda=\frac{L_{e}}{\gamma_{\min }}=\frac{3400}{15.1} \Rightarrow \frac{\operatorname{tad}=29.41 \mathrm{~N} / \mathrm{mm}^{2}}{}$

$$
\begin{aligned}
& L_{V}=70 \mathrm{~mm} ; L_{t}=22 \mathrm{~mm}, \quad t=6 \mathrm{~mm} ; \quad d_{0}=18 \mathrm{~mm} \\
& A r g=L_{v} * t=70 * 6 \Rightarrow A r g=420 \mathrm{~mm}^{2} \\
& A_{v n}=420-1.5 * 18 * 6 \rightarrow A_{\mathrm{vn}}=258 \mathrm{~mm}^{\prime} \\
& A_{t g}=L_{t}+t=22 * 6 \Rightarrow A_{t g}=132 \mathrm{~mm}^{2} \\
& A_{\text {ln }}=132-0.5 * 18 * 6 \Rightarrow 78 \mathrm{~mm}^{2} \\
& T_{d b_{1}}=2 *\left[\frac{A v g f_{y}}{\sqrt{3} * \gamma_{m o}}+\frac{0.9 A v n f u}{\gamma_{m 1}}\right] \quad T_{d b_{2}}=2 *\left[\frac{0.9 \mathrm{Amfu}}{\sqrt{3} \gamma_{m L}}+\frac{A \operatorname{tg} f_{y}}{\gamma_{m u}}\right] \\
& T_{d b_{1}}=156.73 \mathrm{KN}>65.63 \mathrm{KN} \\
& T_{d b_{2}}=147.94 \mathrm{kN}>65.63 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& W=50 \mathrm{~mm}: \quad t=6 \mathrm{~mm} ; \quad L_{t}=28 \mathrm{~mm} \text {. } \\
& L_{c}=40 \mathrm{~mm} ; \\
& b_{s}=W+(W-t)=50+(28-6)=72 m m \\
& \beta=1.4-0.076\left[\frac{W}{t}\right]\left[\frac{f_{4}}{f_{u}}\right]\left[\frac{b_{s}}{L_{c}}\right] \\
& =1.4-0.076\left[\frac{50}{6}\right]\left[\frac{4250}{410}\right]\left[\frac{72}{40}\right] \\
& C_{C}=40 \mathrm{~mm} \\
& \beta=0.704 \\
& A g_{0}=(B-t / 2) * t=(50-6 / 3) * 6=A g_{0}=28 \mathrm{~mm}^{2} \\
& A_{n c}=\left(A-d_{0}-t / 2\right) \times t=(50-18 / 1-6 / 2) * 6 \Rightarrow A A_{n c-134 m^{2}} \\
& T_{d n}=2 *\left[\frac{A_{n c} 0.2 f_{u}}{\gamma_{m l}}+\frac{\beta A_{0} f_{u}}{\gamma_{m o}}\right] \\
& I_{d n}=192.96 \mathrm{kN} \succ 65.63 \mathrm{kN} ; \text { Hence. }
\end{aligned}
$$

Design compression whength

$$
\begin{aligned}
P_{d} & =A_{c} \times \mathrm{fcd} \\
& =11.36 * 29.41 \Rightarrow P_{d}=33.40 \mathrm{kN}<38.18 \mathrm{kN}
\end{aligned}
$$

Hence under. compression, it is unsafe. Revise the section with more area, Try 2 IS $60 * 60 * 8 \mathrm{~mm}$.

$$
\begin{aligned}
& \text { Area }= 1792 \mathrm{~mm}^{2} ; r_{\min }=18 \mathrm{~mm} \\
& \lambda= \frac{L_{e}}{\gamma_{\min }}=\frac{3400}{18}=188.88 \\
& 180 \rightarrow 43.6 \quad \therefore+\therefore \mathrm{fcd}=40.17 \mathrm{~N} / \mathrm{mm}^{2} \\
& 190 \rightarrow 39.7 \\
& P_{d}= A_{c} * f c d \Rightarrow 1136 * 40.17 \Rightarrow P_{d}=71.98 \mathrm{kN}>38.18 \mathrm{kN} .
\end{aligned}
$$

Hence safe
Hence adopt 2ISA $60 * 60 * 8 \mathrm{~mm}$ for Bottom chord member.
4] Design of Inner Member

$$
\begin{aligned}
& \text { Tensile Force }=12.97 \Rightarrow F \cdot F=19.455 \mathrm{kN} \\
& \text { compress Force }=-17.33 \Rightarrow F \cdot F=25.995 \mathrm{kN} \\
& \text { Max Length }=4 \mathrm{~m} \Rightarrow L_{e}=3400 \mathrm{~mm} .
\end{aligned}
$$

since compressive force is more than tensile force, start the resign like a compression member \& then check for tensile force
i) Selection of section

Assume $\mathrm{fcd}=50 \mathrm{~N} / \mathrm{mm}^{2}$
Using $P_{d}=A c f c d$

$$
\begin{aligned}
26 * 10^{3} & =A_{C} * 50 \\
A_{C} & =1733 \mathrm{~mm}^{2}
\end{aligned}
$$

From steel table select single angle, try ISA $(60 * 60 * 8) \mathrm{m}_{4}$

$$
\therefore \text { Area }=896 \mathrm{~mm}^{2}
$$

$$
\gamma_{x}=\gamma_{v}=18 \mathrm{~mm} ; \gamma_{u u}=22.7 \mathrm{~mm} ; \gamma_{v r}=11.5 \mathrm{~mm}
$$

ii) fad Calculation

$$
\begin{aligned}
& l=3400 \mathrm{~mm}=l e \\
& b_{1}=b_{2}=60 \mathrm{~mm} \\
& \text { thickness }=8 \mathrm{~mm} \\
& \gamma \mathrm{~min}=11.5 \mathrm{~mm}
\end{aligned}
$$

$$
b_{1}=b_{2}=60 \mathrm{~mm} \text { (outstanding \& connection leg) }
$$

Design Compressive stress

$$
\begin{aligned}
& { }^{*} f c d=\frac{f_{4} / \gamma_{m 0}}{\phi+\left[\phi^{2}-\lambda_{e}^{2}\right]^{0.5}} \\
& \lambda_{e}=\sqrt{k_{1}+k_{2} \lambda_{r r}{ }^{2}+k_{3} \lambda \phi^{2}}
\end{aligned}
$$

Taking no of bolts ≥ 2 \& fixed condition
\therefore from table $22 . \mathrm{Pg} .48$.

$$
\begin{aligned}
& k_{1}=0.2 ; k_{2}=0.35 ; k_{3}=20 \\
& \Rightarrow \lambda_{r r}=l / \frac{\gamma_{r v}}{\frac{\pi^{2} \epsilon}{250}}=\frac{3400 / 11.5}{1 * \sqrt{\frac{\pi^{2} * 2 * 10^{5}}{250}}} \Rightarrow \lambda_{r v}=3.33 \\
& \Rightarrow \lambda_{\phi}=\frac{\left(b_{1}+b_{2}\right) / 2 t}{\epsilon \sqrt{\frac{\pi^{2} E}{250}}}=\frac{(60+60) /(2 * 8)}{1 * \sqrt{\frac{\pi^{2} * 2 * 10^{5}}{250}}} \Rightarrow \lambda_{\phi}=0.084 \\
& \lambda_{e}=\sqrt{0.2+\left(0.35 *(0.333)^{2}\right)+\left(20 *(0.084)^{2}\right)} \\
& \lambda_{e}=2.05
\end{aligned}
$$

From Is 800 page no 34

$$
\phi=0.5\left[1+\alpha(\lambda e-0.2)+\lambda_{e}^{2}\right]
$$

taking $\alpha=0.49 \mathrm{Pg}$. (85) for buckling class C .

$$
\begin{aligned}
\phi & =0.5\left[1+0.49(2.05-0.2)+2.05^{2}\right] \\
\phi & =3.05 \\
\Rightarrow \text { fed } & =\frac{f y / \gamma_{m 0}}{\phi+\left(\phi^{2}-\lambda e^{2}\right)^{0.5}} \Rightarrow \mathrm{fcc}=42.82 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

\therefore Design compressive force (strength)

$$
\begin{aligned}
P_{d}= & \text { fed } * A c=896 * 42.82 \\
& P_{d}=38.36 \mathrm{kN}>26 \mathrm{kN} ; \text { Hence safe }
\end{aligned}
$$

iii) Connections

Using M16 -Grade 8.6 HSFG bolts

$$
\begin{aligned}
V_{\text {def }} & =1 / v_{m f}\left[l_{f} \eta_{e} K_{h} F_{0}\right] \\
& =1 / 1.25\left[0.55 *(2) * 1 * 078 * \pi * \frac{16^{2}}{4} * 0,7800\right]
\end{aligned}
$$

$V_{d s f}=38.64 \mathrm{KN}$
No of bolts $=\frac{\text { Force }}{\text { Bolt value }}=\frac{26 . \times 10^{3}}{38.64 \times 10^{3}}=0.672$
Hence, provide min bolts $=2$
check for Tension

$$
\begin{gathered}
b_{s}=W+W_{1}-t \\
=60+28-8 \\
b_{s}=80 \mathrm{~mm}
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow A_{n c} & =\left(A-D_{0}-t / 2\right) * t \\
& =(60-18-8 / 2) * 8 \\
A_{n c} & =304 \mathrm{~mm}^{2}
\end{aligned}
$$

Sp-6 for C page in (8)

$$
\begin{aligned}
& L_{t}=25 \mathrm{~mm} \\
& L_{v}=70 \mathrm{~mm} \\
& L_{c}=40 \mathrm{~mm} \\
& C_{1}=\omega=28
\end{aligned}
$$

$$
\beta=1.4-0.076\left[\frac{W}{t}\right]\left[\frac{-\sqrt{f u}}{f u}\right]\left[\frac{b_{s}}{L_{c}}\right]
$$

$$
=1.4-0.076\left[\frac{60}{8}\right]\left[\frac{250}{410}\right]\left[\frac{80}{40}\right]
$$

$$
\beta=0.704
$$

$$
\Rightarrow A g_{0}=(B-t / 2) * t
$$

$$
=(60-8 / 2)+8
$$

$A g_{0}=448 \mathrm{~mm}^{2}$

$$
\begin{gathered}
T_{d n}=\left[\frac{0.9 * 804 * 410}{1.25}+0.704 * 448 * \frac{250}{1.1}\right] \\
T_{d n}=191.55 * 10^{3} \mathrm{~N}>26 \mathrm{KN}
\end{gathered}
$$

Check for Block shear

$$
\begin{aligned}
& L_{v}=70 ; L_{t}=25 ; d_{0}=18 ; t=8 \\
& A_{r g}=L_{r} * t=560 \mathrm{~mm}^{2} \\
& A_{v n}=560-(1.5 * 18 * 8)=344 \mathrm{~mm}^{2} \\
& A_{t g}=L_{t} * t=200 \mathrm{~mm}^{2} \\
& A_{t n}=200-(0.5 * 18 * 8)=120 \mathrm{~mm}^{2} \\
& T_{d b_{1}}=\left[\frac{A r g+y}{\sqrt{3} \gamma_{m 0}}+\frac{0.9 A t n f u}{r_{\mathrm{mL}}}\right]=\left[\frac{560 * 250}{\sqrt{3} * 1.10}+\frac{0.9 * 410 * 120}{1.25}\right] \\
& T_{d b_{1}}=111.26 \mathrm{kNT}
\end{aligned}
$$

$$
\begin{gathered}
T b_{2}=\left[\frac{0.9 A v n-f c c}{\sqrt{3} \gamma_{m L}}+\frac{\lambda+g f y}{\gamma_{m o 0}}\right]=\left[\frac{0.9 \times 410 * 344}{\sqrt{3} \times 1.25}+\frac{200 * 250}{1.10}\right] \\
T_{d b_{2}}=104.08 \mathrm{kN}>26 * 10^{3} \mathrm{~N},
\end{gathered}
$$

Hence s Daff
Design of supports
a) Design of Base SLab

Given, reaction $=180 \mathrm{KNT}$ factored Load $=180 \times 1.5=270 \mathrm{kN}$
For $\mathrm{M}-20$ concrete, f ck $=20 \mathrm{~N} / \mathrm{mm}^{2}$;

$$
\begin{aligned}
\text { Bearing capacity } & =0.45 \% \text { fit } \\
& =0.45 \times 20 \\
& =9 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Area of Base $\Delta L a b=\frac{\text { Load }}{0.45 \mathrm{fkk}}=\frac{75}{9}=8.3 \mathrm{~mm}^{2}$
\Rightarrow Providing square plate, size of plate $=\sqrt{\text { Area }}$

$$
\begin{aligned}
& =\sqrt{8.33 \times 10^{3}} \\
& =91.28 \mathrm{~mm}
\end{aligned}
$$

Provide minimum (200*200) mmr
b. Thickness of Base Plate:

$$
\mathrm{q}_{\mathrm{o}}=\frac{\text { Load }}{\text { Area }}=\frac{270 * 10^{\wedge} 3}{200 \times 200}=6.75 \mathrm{~mm}^{2}
$$

Considering 1 m strip, $\mathrm{q}_{\circ} /$ meter $=2.25 \times 1=6.75 \mathrm{~N} / \mathrm{mm}$

Moment along $x-x$

$$
M_{x-x}=6.75 * 80 * 80 / 2=21,600 \mathrm{~N}-\mathrm{mm}
$$

Equating $M_{x-x}=M_{d}$

$$
\begin{aligned}
= & 1.2 \mathrm{Ze} \frac{f y}{\gamma m o} \ldots . \text { Page } 53 \mathrm{IS}-800 \\
21,600 & =1.2 \mathrm{Ze} \frac{250}{1.10}
\end{aligned}
$$

Where $\mathrm{Ze}=\frac{I}{y}=\left(\mathrm{bd}^{3} / 12\right) /(\mathrm{d} / 2)$

$$
=\mathrm{bd}^{2} / 6=\left(1 \mathrm{~mm} *(\mathrm{t}+8)^{2}\right) / 6
$$

$$
21600=1.2\left(1 \mathrm{~mm} *(\mathrm{t}+8)^{2}\right) / 6 * \frac{250}{1.10}
$$

$$
t=
$$

\qquad mm mm
\therefore Provide base slab $200 \mathrm{~mm} \times 200 \mathrm{~mm} \times$ mm

c. Anchor Bolts:

Given uplift force $=50 \mathrm{KN}$
Provide 4 bolts at each end.
\therefore Force in each bolt $=50 / 4=12.5 \mathrm{KN}$
Ultimate force $=1.4$ * $4=18.75 \mathrm{KN}$
From IS 456, for M20 Concrete
$\left(\tau_{\text {bd }}\right)_{\text {bond stress }}=1.2 \mathrm{~N} / \mathrm{mm}^{2} * 1.60 \ldots . .$. .Page No. 43
Equating external force $=$ Resisting force

> 18.75 KN = Circumference of bolt * Height * Bond Stress

$$
18.75=\pi D^{*} h^{*} \tau_{b d}
$$

$$
18.75 * 10^{3}=\pi * 16 * h * 1.2 * 1.6
$$

h = \qquad $\mathrm{mm} \approx \ldots \ldots \ldots . \mathrm{mm}$
Hence Provide at each end $4-16 \mathrm{~mm}$ dia, mm length anchor bolts

EnLarged View of Hinged End

Enlarged View of Roller End

Roof Truss type 2-2 ${ }^{\text {nd }}$ Problem

2. The forces in the members of the roof truss of an industrial building are as shown in table. The truss is supported on 400 mm thick masonry. End reaction due to dead load + live load is 10.556 KN. Members are to be connected at the joints with 16 mm dia bolts and 8 mm thick gusset plate. Design the members and base plate. Assume permissible bearing pressure on masonry $=0.8 \mathrm{Kn} / \mathrm{mm}^{2}$ and size of the Shoe angle is 2ISA $75 \times 75 \times 6 \mathrm{~mm}$ on each side of the gusset plate.

Members	Force	
	Compression (-ve) KN	Tension (+ve) KN
LoV1,V1V2,V2V3	-17.4	20.9
LoL1, L1L2, L2L3	-14	14.9
V3L2	-8.7	6
V2L2	-5.3	7.4
V2L1	-6.7	4.6
V1L1	-3.5	5

Soln:

1. Load Calculation:

Members	Force		Final Design Force	Length in m
	Compression (-ve) KN	Tension (+ve) KN		
LoV1,V1V2,V2V3	-17.4	20.9	$\begin{aligned} & \hline \text { Top Chord } \\ & \hline+20.9 \text { (T) } \\ & -17.4 \text { (C) } \\ & \hline \end{aligned}$	1.79
LoL1, L1L2, L2L3	-14	14.9	$\begin{gathered} \frac{\text { Bottom Chord }}{+14.9(T)} \\ -14(\mathrm{C}) \end{gathered}$	3.10
V3L2	-8.7	6	$\begin{gathered} \text { Inner Member } \\ +8.7(\mathrm{C}) \\ -7.4(\mathrm{~T}) \end{gathered}$	3.10
V2L2	-5.3	7.4		
V2L1	-6.7	4.6		
V1L1	-3.5	5		

2. Design Top Chord Member:

Since tension force is more than compressive force, Design the member as tension member and check for Compressive load Carrying Capacity

3. Desing of Bottom Chord Member:

Since tension force is more than compressive force, Design the member as tension member and check for Compressive load Carrying Capacity

4. Desing of Inner Member:

Since Compressive force is more than tension force, Design the member as Compressive member and check for Tension load Carrying Capacity

5. Design of Base Plate: (Design of Support)

a. Area of Base Plate

b. Thickness of Base Plate
c. Anchor Bolts
3. Design a roof truss shown in figure. The forces in the members of the truss due to dead load, live load and wind load are tabulated below.

Soln:

1. Load Calculation:

Members	$\begin{gathered} \text { DL + LL } \\ \text { (KN) } \end{gathered}$	$\begin{gathered} \text { DL+WL } \\ \text { (KN) } \end{gathered}$	Design Force (KN)	Length in M
AB	+36.17	-22.95	Top Chord	
BC	+29.24	-20.44	+36.17 (C)	1.863
CD	+30.31	-23.85	-23.85 (T)	
DE	-12.83	+9.57	Inner Member	
EC	+6.95	-5.65	-12.83 (C)	3.33
EB	+6.95	-6.38	+9.57 (T)	
EA	-32.21	+18.84	ttom Chord	
EF	-19.30	+7.94	$\begin{aligned} & -32.21(\mathrm{C}) \\ & +18.84(\mathrm{~T}) \end{aligned}$	3.33

2. Design of Top Chord Member
3. Design of Bottom Chord Member
4. Design of Inner Member

Welded Plate Girder and its Components:

Module 2

Design of Welded Plate Girder

Plate girders are deep built-up beams used in bridges, building and industrial structure. For heavy loads and long spans, plate girders are substituted for rolled beams. A Plate girder consists of web plate with stiffeners if required and top \& bottom flanges.

Components of Welded Plate Girders:

Following are the various components of plate girder as shown in the figure.

1. Flange plates: Top and Bottom Plates to take the bending moment.
2. Web Plate: To take the shear force.
3. Vertical or Transverse Stiffeners: Provided along the span to increase web buckling strength.
4. Horizontal Stiffeners or Longitudinal stiffeners: Provided in areas of very high moments.
5. End or Bearing Stiffeners: Provided at Concentrated loads and reactions points to transfer the loads.
6. Splices: They are provided if necessary continuity required in the web \& flanges.

Following are the different steps used in design of Welded plate Girder:

1. Design of mid span
a. Load Calculation
b. Girder Dimensions
i. Web Depth
ii. Web Thickness
iii. Flange width
iv. Flange Thickness
c. Check for moment of resistance
d. Check for Shear
e. Welded connection between flange and Web
2. Curtailment of flange plate
3. Design of Intermediate Stiffeners (IS)
4. Design of End Bearing Stiffeners (EVS)

DESIGN OF WELDED PLATE GIRDER.
Plate Girders are deep built-up beams used in bridges, building \& industrial structure. For heavy loads \& long copans, plate girders are substituted for rolled beams A plate girder consists of web plate with sniffers if required \& top \& bottom flanges.

Components of Welded Plate Girdler.
Following are the various components of plate girder as shown in figure
i) Flange plates-top \& bottom. to take the bending moment
ii) Web plate - to take the Shear force.
iii) Verticle or transverse stfffierss - provicled along the upon to increase web buckling strength.
iv) Horizontal utiffinens or longitudinal stiffeners. - provided in areas of very high moments.
v) End or Bearing (differs - Provided at concentrated loads and reactions points to transver the loacks.
vi) Splices - These are sect to 7 -they provided the necessary continuity required in the web \& flanges.

Following are the different steps used in design of weld Plate Girder.

1) Design of midapan
a) Load Calculation
b] Girder Dimensions
Page 4 of 16
i) Web clepth
ii) Web thickness
iii) Flange width
iv) Flange Thickness
c] check for moment if resistance.
d] Check for shear
e] Welded connection between flange \& web.
2] Curtailment of flange plate:
2) Design of intermediate cifffners (IS)

4] Design of end bearing: stiffeners (EVS)
Problems.
4) Design a welded plate girdler for an effective span of 18 m to support a UDL of $60 \mathrm{kN} / \mathrm{m}$ in addition to a pair of point loads of magnitude 600 KN each at $1 / 3$ spar.

Design the central section (midppan), bearing stiffeners, intermediate stiffness, their connection, curtailment of flange plate.

Draw sketches of it thalf-longitudinal section.
ii) Cross-cection at centre \& suppoit.
iii) Sectional plan oxipport bearing
etiffner to an enlarged recall.
Sol 1: 1 Design of mideopan.
a) Load calculation.
self Weight of the girdler

$$
\begin{aligned}
& =\frac{\text { Live load }}{36250}= \\
& =\frac{60 \times 18+2(600)}{250}
\end{aligned}
$$

pelf wt of $G^{\circ}=9.12 \mathrm{kN} / \mathrm{m} \simeq 10 \mathrm{kN} / \mathrm{m}$

$$
\begin{aligned}
& \text { Reaction }=V_{A}=V_{B}=\frac{(70 \times 18)+(2 * 600)}{2} \\
& \text { Shear force, } V_{A}=V=3230 \mathrm{kN} \\
& \text { Ultimate shear force }=1845 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Span, } L_{e}=18 \mathrm{~m} \\
& O D L=60 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Point load $=600 \mathrm{kN}$ e
$1 / 3$ of op an

$$
\begin{aligned}
& f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \\
& f_{y_{\omega}}=250 \mathrm{~N} / \mathrm{mm}^{2} \\
& V_{\text {mo }}=1.10 \\
& r_{m \omega}=1.25 \quad \text { Page } 5 \text { of } 16
\end{aligned}
$$

Maximum bending moment occults at 0 .

$$
\begin{aligned}
\therefore M_{0} & =(1230 \times 9)-(70 \times 9 \times 9 / 2)-(600 \times 3) \\
M_{0} & =6435 \mathrm{kN}-\mathrm{m} .
\end{aligned}
$$

\therefore Ultimate moment,$M_{u}=965.2 .5 \mathrm{KN}-\mathrm{m}$
b) Girder Dimension.
i) Depth of Web.

$$
\begin{aligned}
& \text { of Web. } \begin{aligned}
& d=d w=\left[\frac{k M_{\mu}}{f y}\right]^{0.33,}, \\
& \text { Assume } k=150 \text { to } 200 \\
& \text { \& take } k=150
\end{aligned} \\
& \\
& =\left[\frac{\left(15 * 9652.5 * 10^{6}\right)}{250}\right]^{0.33}
\end{aligned}
$$

$$
d \omega=1666.176 \mathrm{~mm}
$$

$$
\text { Take, } d w=d=1700 \mathrm{~mm}
$$

iii Web Thickness.
For clastic of compact condition [from table 2 Pg 18]

$$
\frac{d}{t \omega} \leq 84 \epsilon \text { or } 105 \epsilon
$$

$$
\begin{aligned}
& t_{w} \\
& d / t w=105 \epsilon, \text { where } \epsilon= \\
&=\left[\frac{250}{f y}\right]^{1 / 2}=\left[\frac{250}{250}\right]^{1 / 2} \\
& \frac{1700}{t_{w}}=105 * 1 . \\
& t w=16.19 \mathrm{~mm} \simeq 18 \mathrm{~mm}
\end{aligned}
$$

Hence web cage $=d w * t w=1700 \mathrm{~mm} * 28 \mathrm{~mm}$.
ni Flange Widths

$$
\text { Flange width, } \begin{aligned}
b_{f} & =0.3 d_{w} \\
& =0.3 * 1700 \\
b_{q} & =510 \mathrm{~mm} \simeq 550 \mathrm{~mm}
\end{aligned}
$$

iv) Flange thickness

Flange thickness, ff
For clastic or compact condn $(\mathrm{Pg} 18)$

$$
\frac{266}{4}=8.4 \Rightarrow t=31.67 \text {,ay } t=30 \mathrm{~mm}
$$

Page 6 of 16
\therefore Flange plate $=$ bo $* 4=550 \mathrm{~mm} \times 32 \mathrm{~mm}$
For standard thickness of flange, refer steel tables [88 to 90)
c] Check for moment of resistance [pg. 53]
Design bending strength, $M_{d}=\frac{\beta_{b} Z_{p} f_{y}}{V_{m D}}$
where, $\beta_{b}=1, z_{p}=$ plastic moclulus
MI about $\bar{z}-z$ axis.

$$
\begin{aligned}
= & \frac{b d^{3}}{12} \\
= & \frac{550 *(1700 * 3.2+3,2)^{3}}{12}- \\
& 2\left[\frac{266 *(1700)^{3}}{12}\right] \\
I_{z z}= & 3.37 * 10^{10} \mathrm{~mm}^{4}
\end{aligned}
$$

Similarly Plastic Modulus (op)

$$
\begin{aligned}
& =2[50 \times 32]+22[\\
& =2\left[(550 * 32) *\left(\frac{32}{2}+850\right)\right]+2\left[(850 * 18) * \frac{850}{2}\right] \\
& z_{p}=43.48 * 10^{6} \mathrm{~mm}^{4} . \\
& \therefore M_{d}=\frac{1 \times 43.48 * 10^{6} * 250}{1.20} \\
& \begin{aligned}
M_{d} & =9.88 * 10^{9} \mathrm{~N}-\mathrm{mm} \\
& =9.88 \times 10^{6} \mathrm{Nm} \\
& =9880 * 10^{6} \mathrm{~N}-\mathrm{mm}
\end{aligned}>M_{L L}(9652.5 \mathrm{KN}-\mathrm{mm})
\end{aligned}
$$

If $M_{d}<M_{M}$, then increase flange dimension. [NOTE]
d) Check for shear. [Eg.594 60]

From is 800 , design shear strength,

$$
\nabla / \nabla d=\frac{V_{n}}{V_{m 0}}=\frac{V_{c r}}{\gamma_{m 0}}=\frac{A_{v} \tau_{b}}{V_{m 0}}
$$

cohere, $A_{v}=$ Shear area

$$
\begin{aligned}
& =d \omega t \omega_{0}=1700 * 18 \\
& A_{v}=39600 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{b}=\left[1-0.8\left(\lambda_{\omega}-0.8\right)\right] * \frac{f_{y \omega}}{\sqrt{3}} \\
& \lambda_{\omega}=\sqrt{\frac{f y \omega}{\sqrt{3} \tau_{c r} \times e}}, \quad \tau_{c r} * e=\frac{K_{v} \pi^{2} E}{\frac{k_{2}}{12}\left(1-\mu^{2}\right)(d / t \omega)^{2}} \\
& k_{v}=5.35+\frac{4 \cdot 0}{(c / d)^{2}}
\end{aligned}
$$

To prevent buckling of web, provide intermediate stiffeners at a spacing $=1.5 \mathrm{~d}$ [max spacing allowed]
1.e., $\quad c / d=\frac{1.5 * 1700}{1700}$

$$
k_{v}=5.35+\frac{4.0}{\left[\frac{1.5)^{2} \times 1700}{1700}\right]^{2}} \Rightarrow \frac{k_{v}=7.12}{}
$$

$\mu=0.3$

$$
=\frac{7.12 * \pi^{2} * 2 \times 10^{5}}{122(1-0.3)^{2}\left(\frac{1700}{18}\right)^{2}}
$$

$$
\begin{aligned}
& \therefore \tau_{c r} * e=144.35 \\
& \lambda_{\omega}=\sqrt{\frac{f_{j \omega}}{\sqrt{3} \tau_{c r} * e}}=\sqrt{\frac{250}{\sqrt{3} * 144.35}} \Rightarrow \lambda_{\omega}=0.99 \\
& \tau_{b}=[1-0.8(\lambda \omega-0.8)] * \frac{f y \omega}{\sqrt{3}}=1-0.8(0.99-0.8) * \frac{250}{\sqrt{3}} \\
& \tau_{b}=126.24 \\
& \therefore V_{d}=\frac{A_{v} \tau_{b}}{y_{m 0}}=\frac{30,600 * 121,24}{1,1.0} \\
& V_{d}=3372.67 * 10^{3} \mathrm{~N}=3372.67 \mathrm{KN} \rightarrow V_{u}=1845 \mathrm{kN}
\end{aligned}
$$

e) Welded connection b/w Flange \& Web

Force in the top junction,

$$
\begin{aligned}
& F=\frac{V * a \bar{y}}{I_{z z}} \\
&=\frac{1845 \times 10^{3} * 15.24 * 10^{6}}{3.37 * 10^{10}} \\
& F==1845 \mathrm{kN} \\
& I_{z z}= 3.37 \times 10^{10} \mathrm{~mm} \\
& a \bar{y}=(550 * 32) *\left(850+\frac{32}{2}\right) \\
&=15.24 \times 10^{6}
\end{aligned}
$$

Now, equating above force to the strength if the weld

$$
\begin{aligned}
& \text { i.e., } F=\left[0.75 * S * L * \frac{f u}{\sqrt{3} \gamma_{m \omega}}\right] * 2 \quad \text { take } L \text { - } 1 \mathrm{~mm} \\
& 834.44=\left[0.75 * S * 1 * \frac{410}{\sqrt{3} * 1.25}\right] * 2 \\
& S=3.147 \mathrm{~mm}
\end{aligned}
$$

\therefore Provide minimum 5 mm size of weld for web 4 flange connection

2] Curtailment of Flange Plate.
Bending moment is maximum only in the midespan \& decreases towards the support. Hence from economical point of new as moment decreases, decrease the thickness of flange \& it is called as curtailment of flange plate.:

Available size thickness of flange $\quad 8346.3 \mathrm{kNmax}=9690.3 \mathrm{kNm}$ $32,25,20,18,16,12,10,8,6 \mathrm{~mm}$

9] Let us decrease the plate
 thickness from 32 mm to 25 mm

NOTE: The standard thickness of plate are $32,25,20,18,16,12$,

$$
10,8,6 \mathrm{~mm}
$$

using moment of resistance

$$
\begin{aligned}
& M_{d}=\beta_{b} Z_{p} \frac{f_{y}}{\gamma_{m 0}}+\operatorname{Ig} \text { no } 53 . \\
& \beta_{b}=1
\end{aligned}
$$

Plastic modulus, $z_{p}=2 \sum a \bar{y}$

$$
\begin{aligned}
& =2\left[\left(550 * 25 * 850+\frac{25}{2}\right)+\left(850 * 18 * \frac{850}{2}\right)\right] . \\
Z_{p} & =36.723 * 10^{6} \mathrm{~mm}^{4} \\
M_{d} & =1 * 36.723 * 10^{6} * \frac{250}{1.10} \\
M_{d} & =8346.13 * 10^{6} \cdot \mathrm{Nmm} \\
& =8346.3 . \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Location of the above moment

$70 \times 1.5=105 \mathrm{kN} \cdot \mathrm{m}$

$$
\begin{aligned}
& \Sigma M_{c}= \\
& (1845 * 6)-(105 * 6 * 6 / 2)= \\
& \therefore M_{c}=9180 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
V_{A} & =1230 \times 1.5 \\
= & 1845 \mathrm{KN} \\
& +\quad x
\end{aligned}
$$

Hence consider section $x-x$ @ a distance ' x ' inbetween A \& C.

$$
\begin{aligned}
M_{x-x} & \Rightarrow 346.3 * 10^{6}=(1845 \times x)-(105 * x * x / 2) . \\
x & =5.33 \mathrm{~m}, \mathrm{x}=\mathrm{m}
\end{aligned}
$$

ii) In the $2^{\text {nd }}$ curliment, reduito , the thickness from 25 to 16 mm using moment of resistance

$$
M_{d}=I_{p} \beta_{b} \frac{6 y}{V_{m 0}}
$$

$$
z_{p}=\Sigma a \bar{y}
$$

$$
=2\left[(560 * 16)(850 * 16 / 2)+(850 * 18) *\left(\frac{850}{2}\right)\right]
$$

$$
z_{p}=28.10 \times 10^{6} \mathrm{~mm}^{4}
$$

$$
M_{d}=1 * 28.10 * 10^{6} * \frac{250}{1.10}
$$

Location of above moment

$$
\begin{aligned}
& M_{x x}=(1845 * x)-(105 * x * x / 2) \\
& 6387.68=(1845 * x)-(105 * x / 2) \\
& x=3.90 m \text { from A }
\end{aligned}
$$

Page 10 of 16
3) Design if intermediate eptiffners (IS)

i] Check for requirement

$$
\frac{\text { Check for requirement }}{\text { Ratio }=d / \text { do }=\frac{d \omega / t \omega}{18}=\frac{1700}{18}=94.44 \mathrm{~mm}>6 \pi}
$$

Is per code, if the ratio is >67, then intermediate stiffeners is required. Hence provide is to prevent buckling of web
ii) Spacing of I.S_[C]

Provide I is at a maximum spacing $C=1.5 \mathrm{~d}$

$$
\therefore 28 \mathrm{C}=1.5(1700) \quad \rightarrow-G=2550 \mathrm{~mm}=2.55 \mathrm{~m} d / \mathrm{c}
$$

iii) prize of I.S.

Now the ratio. $c / d=1.5>\sqrt{2}$ Its per code, if $c / d>\sqrt{2}$, the following eq ishould be used. class 8.7 .2 .4 of IS 800, hence the $\left[M I=I_{S}=0.75 * d \times t_{\omega}^{3}\right] \rightarrow[$ Pg. no 66]

$$
I_{s}=0.75 * 1700 *(18)^{3}=I_{8}=7.4 .4 * 10^{6} \mathrm{~mm}^{4}
$$

MI for the above Is

$$
\begin{aligned}
I_{s} & =2\left[\frac{b d^{3}}{12}+a y^{2}\right] \\
7.44 * 10^{6} & =2\left[\frac{b d^{3}}{12}+(b * d) *(d / 2+18 / 2)^{2}\right]
\end{aligned}
$$

Let. Vising 8 mm thick plate, $\quad b=8 \mathrm{~mm}$

$$
\begin{aligned}
7.44 \times 10^{6} & =22\left[\frac{8 * d 3}{12}+(8 * d) *(d / 2+9)^{2}\right] \\
d & =102.75 \mathrm{~mm} \text { bay } 110 \mathrm{~mm} \mathrm{~d}
\end{aligned}
$$

\therefore Provide is of size $8 \times 110 \mathrm{~mm}$
iv) Connection of is with Web $[\mathrm{Pg}$. No, bf $] \rightarrow 8.7 .26$

$$
\begin{aligned}
& \text { Force for the above connect }=\frac{t w^{2}}{55 \times b_{s}} \\
& \therefore=\frac{18^{2}}{5 \times 110} \Rightarrow 0.589 \mathrm{kN} / \mathrm{mm} \\
& \text { Force }=589 \mathrm{~N} / \mathrm{mm}
\end{aligned}
$$

Equating above force with the cotrength if the weld

$$
\begin{aligned}
F & =4\left[0.75 * S * L * \frac{f u}{\sqrt{3} \gamma_{m \omega}}\right] \quad \text { Take } L=1 \mathrm{~m} \\
0.589 \times 1 \theta^{3} & =4 \times\left[0.75 * S * 1 \mathrm{~mm} \times \frac{410}{\sqrt{3} \times 1.25}\right] \\
S & =1.03
\end{aligned}
$$

\therefore Provide minimum size of roeld $=3 \mathrm{~mm}$
4) Deign of End Bearing Cotiffners [EBS]

Due to reactions at the end, the web plate may buckle, To prevent this provide stiffeners at the ends called EBS.

$$
\begin{aligned}
& \text { Reactions }=S F=V_{L L}=1845 \mathrm{kN} \\
& d \omega * t \omega=1700 * 8 \mathrm{~mm} .
\end{aligned}
$$

i] Local
(check for requirements)

$$
F_{\omega}=\left(b_{1}+n_{2}\right)+\omega \frac{f_{y \omega}}{\nu_{m 0}}
$$

where, $b_{1}=$ Width of bearing $=100 \mathrm{~mm}$ (Assumption)

$$
\begin{gathered}
n_{2}=16 \times 2.5=40 \mathrm{~mm} \\
F_{\omega}=(100+40) \times 18 \times \frac{250}{1.10} \\
F_{L O}=572.72 \mathrm{kN}<1845\left(v_{u}\right)
\end{gathered}
$$

Since load carrying capacity of the web: is < external tran (or) Force, A^{2}, we need
 to provide bearing cotiffeners at the encls:
ii) Area of etiffners [Ig:no 68] - class 8.7 .5 .2

$$
\frac{A_{q} f_{y q}}{0.8 r_{m o}} \geq F_{x}
$$

where $f_{x}=$ Reaction $* A q$. Area required for EDs

$$
\frac{A q \times 250}{0.8 \times 1.10}=1845 * 10^{3} \Rightarrow A q=6.494 \mathrm{~m}^{2}=6494 \mathrm{~mm}^{2}
$$

Provide approximately the sine of EVS, same as that of Is size le., $110 \mathrm{~mm} * 8 \mathrm{~mm}$

Also along with EPS plates, the part of the web ($20 \times 1 w^{\circ}$ $20 * 18=360$) on either circe of cotiffners, also acts like EBS.
The EBS is designed like a compression member $8^{0^{\circ}}$ a effective height $=0.7 * d$

$$
\begin{aligned}
\therefore L_{e} & =0.7 * d=0.7 * 1700 \\
& \Rightarrow L_{e}=1190 \mathrm{~mm}
\end{aligned}
$$

The cos area of above EBS $\Rightarrow A=2[(110 * 8)]+(360+360) * 18]$

$$
\begin{aligned}
& \quad A=14720 \mathrm{~mm}^{2} \\
& I_{z z}=\left[\sum a y^{2}\right. \\
& 2\left[\frac{8 * 110^{3}}{12}+(8 * 110) *\left[\frac{110}{2}+\frac{18}{2}\right)^{2}\right]+\left[\frac{720 \times 18^{3}}{12}+(720 * 8) \times 0\right] \\
& I_{z z}=9.33 * 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

$$
I_{\text {min }}=I_{z z}=9.33 * 10^{6} \mathrm{~mm}^{4}
$$

$$
I_{\min }=I_{z z}=9.33 * 10^{*} \mathrm{~mm}
$$

$$
r_{\text {min }}=25.17 \mathrm{~mm}
$$

- plenclertess ratio, $\lambda=\frac{L_{e}}{\gamma_{\text {min }}}=\frac{1190}{25.17} \Rightarrow \lambda=47.27$

From page 42 , table $9 \mathrm{C}, 40 \rightarrow 198$

$$
47.27 \rightarrow \text { ? }
$$

$$
\therefore \text { fca }=187.09 \mathrm{~N} / \mathrm{mm}^{2} / 50 \longrightarrow 183
$$

\therefore Design compressive strength

$$
\begin{aligned}
P_{d} & =\text { fed } A_{c} \\
& =187.09 * 14720 \\
P_{d} & =2753.96 \mathrm{kN}>\mathrm{Vu}(1845 \mathrm{KN})
\end{aligned}
$$

\therefore If is hence
iii) Connections, Welded connection b/w WEB \& EBS.

$$
\begin{aligned}
& \text { Force } / \mathrm{mm} \text {, height of web }=\frac{\text { Reaction }}{\text { two }}=\frac{1845 \times 10^{3}}{N \otimes 1700} \\
& \qquad F=1086 \mathrm{~N} / \mathrm{mm}
\end{aligned}
$$

Equating above force with strength of the
weld

$$
\begin{aligned}
F= & 4\left[0.75 \times 5 \times 1 * \frac{f u}{\sqrt{3} * v \mathrm{~m} \mathrm{\omega}} \cdot \mathrm{~F}\right. \\
1086 & =4\left[0.75 * S * J * \frac{410}{\sqrt{3} * 1.25}\right] \\
S & =1.68 \mathrm{~mm} \quad \text { provide minimum } 3 \mathrm{~mm} \text { olze of } \\
& 1.91 \mathrm{~mm} \quad \text { weld }
\end{aligned}
$$

5) Design of Bearing stiffeners.

It is provided under the external point load $(1.5 * 600=900 \mathrm{kN})$. The design procedure of B.S \& EB are one \& the same. Replace reaction by point load

$$
F_{\omega}=\left(b_{1}+n_{2}\right) * t \omega \frac{f_{y \omega}}{\gamma_{m 0}}=(100+40) * 18 * \frac{250}{110}
$$

$F_{\omega}=572.72 \mathrm{kN}<900 \mathrm{kN}$: Since load carrying capacity is <external force , we need to provide bearing stiffeners @ the intermediate point/concentrated la ad.
iii) Area of etiffrets.

$$
\begin{aligned}
& \text { of ctiffiers } \\
& \text { Aqfyq } / 0.8 \gamma_{\mathrm{mo}} \geq F_{x} \Rightarrow 900 \times 10^{3}=\frac{A q * 250}{0.8 * 1.10} \\
& A q=3168 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide approximately the size of EBS. i.e, $110 * 8 \mathrm{~mm}$ Also along: with EBS plate, the past of web $(20 * t \omega=360 \mathrm{~mm})$ on either side of stiffeners also acts like EBS The BS are designed like a compressive
member for a effective length $=0.7 \times d$

$$
\begin{aligned}
& \text { Le }=0.7 * 1700 \Rightarrow \text { Le }=1190 \mathrm{~mm} \\
& c / s \text { of above } B S=2 *[(110 * 8)]+[(360+360) * 18] \\
& \left.\quad \text { Area }=14720 \mathrm{~mm}^{2}\right] \\
& I_{z z}=\left[a \bar{Y}^{2}\right. \\
& =2\left[\left(\frac{8 * 1100^{3}}{12}\right)+(8 * 110) *(118 / 2+18 / 2)^{2}\right]+\left[\frac{720 * 18^{3}}{12}+(720 * 8) * 0\right] \\
& I_{z z}=9.33 * 10^{6} \mathrm{~mm}^{2}
\end{aligned}
$$

min radius of Gyration,,$\gamma_{\text {min }} \sqrt{\frac{I_{z z}}{\text { Area }}}=\sqrt{\frac{149.33 \times 100}{1420}}$

$$
\begin{aligned}
& \gamma_{\text {min }}=25.17 \\
& \lambda=b_{\text {rain }}=\frac{11900}{25.17} \quad x=47.27 \sqrt{3 \cdot f c d=187.09 \mathrm{~N} / \mathrm{mm}^{2} / \text { Page } 14 \text { of } 16}
\end{aligned}
$$

cornoressive strength, $P_{d}=f \mathrm{~cd} x A \mathrm{C} \Rightarrow P_{d}=2753.96 \mathrm{kN}>900 \mathrm{KN}$
vi t Connections
Fare $/ \mathrm{mm}$ length $=\frac{\text { Reaction }}{\text { dwi }}=\frac{900}{1700}=529.411 \mathrm{kN}$

Equating above force with strength of the weld

$$
\begin{aligned}
& \text { Hing above fore } \\
& 529.411 * 10^{3} \quad\left\{0.75 * S * 1 * \frac{410}{1.25 * \sqrt{3}}\right] \\
& S=3.727 \mathrm{~mm}\left[\begin{array}{c}
\therefore \text { Provide } 4 \mathrm{~mm} \text { epize of } \\
\text { Weld }
\end{array}\right.
\end{aligned}
$$

Sectional plan * ulipport Bearing otiffrers
WELDED PLATE GIRDER [HAlf Longitudinal sene]

es @ sapor

Design a roelded plate girder of spar 16 m subjected to an UDL of $30 \mathrm{kN} / \mathrm{m}$ throughout the span along with 3 concentrono loads of magnitude 300 kN @ a copacing of 4 m . Design
i) Midupan cross-section
i) Curtiment of flange plate.
iii) Intermidate otiffiners
iv End bearing stiffeners
v) Bearing etiffners

1) Design of midspan

$$
\text { Self Weight }=\frac{\text { Liver load }}{250}=\frac{(30 \times 16)+2(300)}{250}=5.52 \mathrm{kN} / \mathrm{m}
$$

Self $\frac{W H}{}=6 \mathrm{kN} / \mathrm{m}$
Reaction, $V_{A}=V_{B}=\frac{(36 * 16)+3(300)}{} \Rightarrow V_{A}=V_{B}=738 \mathrm{KN}$

